Computer Vision:
Algorithms and Applications

Richard Szeliski

September 3, 2010 draft

(©2010 Springer

This electronic draft is for non-commercial personal use only,
and may not be posted or re-distributed in any form.

Please refer interested readers to the book’s Web site at
http://szeliski.org/Book/.

http://szeliski.org/Book/

This book is dedicated to my parents,
Zdzistaw and Jadwiga,

and my family,
Lyn, Anne, and Stephen.

1 Introduction 1

What is computer vision? e A brief history e
Book overview e Sample syllabus e Notation

2 Image formation 29

Geometric primitives and transformations e
Photometric image formation e
The digital camera

3 Image processing 99

Point operators e Linear filtering e
More neighborhood operators e Fourier transforms e
Pyramids and wavelets e Geometric transformations e
Global optimization

4 Feature detection and matching 205

Points and patches e
Edges e Lines

5 Segmentation 267

Active contours e Split and merge e
Mean shift and mode finding e Normalized cuts e
Graph cuts and energy-based methods

6 Feature-based alignment 309

2D and 3D feature-based alignment e

Pose estimation e
Geometric intrinsic calibration

7 Structure from motion 343

Triangulation e Two-frame structure from motion e
Factorization e Bundle adjustment e
Constrained structure and motion

8 Dense motion estimation 381

Translational alignment e Parametric motion e
Spline-based motion e Optical flow e
Layered motion

9 Image stitching 427
Motion models e Global alignment e
Compositing
10 Computational photography 467

Photometric calibration e High dynamic range imaging e
Super-resolution and blur removal e
Image matting and compositing e
Texture analysis and synthesis

11 Stereo correspondence 533

Epipolar geometry e Sparse correspondence e
Dense correspondence e Local methods e
Global optimization e Multi-view stereo

12 3D reconstruction 577

Shape from X e Active rangefinding e
Surface representations e Point-based representations e
Volumetric representations e Model-based reconstruction e
Recovering texture maps and albedos

13 Image-based rendering 619

View interpolation e Layered depth images e
Light fields and Lumigraphs e Environment mattes e
Video-based rendering

14 Recognition 655

Object detection e Face recognition e
Instance recognition e Category recognition e
Context and scene understanding e

Recognition databases and test sets

Preface

The seeds for this book were first planted in 2001 when Steve Seitz at the University of Wash-
ington invited me to co-teach a course called “Computer Vision for Computer Graphics”. At
that time, computer vision techniques were increasingly being used in computer graphics to
create image-based models of real-world objects, to create visual effects, and to merge real-
world imagery using computational photography techniques. Our decision to focus on the
applications of computer vision to fun problems such as image stitching and photo-based 3D
modeling from personal photos seemed to resonate well with our students.

Since that time, a similar syllabus and project-oriented course structure has been used to
teach general computer vision courses both at the University of Washington and at Stanford.
(The latter was a course I co-taught with David Fleet in 2003.) Similar curricula have been
adopted at a number of other universities and also incorporated into more specialized courses
on computational photography. (For ideas on how to use this book in your own course, please
see Table 1.1 in Section 1.4.)

This book also reflects my 20 years’ experience doing computer vision research in corpo-
rate research labs, mostly at Digital Equipment Corporation’s Cambridge Research Lab and
at Microsoft Research. In pursuing my work, I have mostly focused on problems and solu-
tion techniques (algorithms) that have practical real-world applications and that work well in
practice. Thus, this book has more emphasis on basic techniques that work under real-world
conditions and less on more esoteric mathematics that has intrinsic elegance but less practical
applicability.

This book is suitable for teaching a senior-level undergraduate course in computer vision
to students in both computer science and electrical engineering. I prefer students to have
either an image processing or a computer graphics course as a prerequisite so that they can
spend less time learning general background mathematics and more time studying computer
vision techniques. The book is also suitable for teaching graduate-level courses in computer
vision (by delving into the more demanding application and algorithmic areas) and as a gen-
eral reference to fundamental techniques and the recent research literature. To this end, [have
attempted wherever possible to at least cite the newest research in each sub-field, even if the

viii Computer Vision: Algorithms and Applications (September 3, 2010 draft)

technical details are too complex to cover in the book itself.

In teaching our courses, we have found it useful for the students to attempt a number of
small implementation projects, which often build on one another, in order to get them used to
working with real-world images and the challenges that these present. The students are then
asked to choose an individual topic for each of their small-group, final projects. (Sometimes
these projects even turn into conference papers!) The exercises at the end of each chapter
contain numerous suggestions for smaller mid-term projects, as well as more open-ended
problems whose solutions are still active research topics. Wherever possible, I encourage
students to try their algorithms on their own personal photographs, since this better motivates
them, often leads to creative variants on the problems, and better acquaints them with the
variety and complexity of real-world imagery.

In formulating and solving computer vision problems, I have often found it useful to draw
inspiration from three high-level approaches:

e Scientific: build detailed models of the image formation process and develop mathe-
matical techniques to invert these in order to recover the quantities of interest (where
necessary, making simplifying assumption to make the mathematics more tractable).

e Statistical: use probabilistic models to quantify the prior likelihood of your unknowns
and the noisy measurement processes that produce the input images, then infer the best
possible estimates of your desired quantities and analyze their resulting uncertainties.
The inference algorithms used are often closely related to the optimization techniques
used to invert the (scientific) image formation processes.

¢ Engineering: develop techniques that are simple to describe and implement but that
are also known to work well in practice. Test these techniques to understand their
limitation and failure modes, as well as their expected computational costs (run-time
performance).

These three approaches build on each other and are used throughout the book.

My personal research and development philosophy (and hence the exercises in the book)
have a strong emphasis on festing algorithms. It’s too easy in computer vision to develop an
algorithm that does something plausible on a few images rather than something correct. The
best way to validate your algorithms is to use a three-part strategy.

First, test your algorithm on clean synthetic data, for which the exact results are known.
Second, add noise to the data and evaluate how the performance degrades as a function of
noise level. Finally, test the algorithm on real-world data, preferably drawn from a wide
variety of sources, such as photos found on the Web. Only then can you truly know if your
algorithm can deal with real-world complexity, i.e., images that do not fit some simplified
model or assumptions.

Preface iX

In order to help students in this process, this books comes with a large amount of supple-
mentary material, which can be found on the book’s Web site http://szeliski.org/Book. This
material, which is described in Appendix C, includes:

e pointers to commonly used data sets for the problems, which can be found on the Web

e pointers to software libraries, which can help students get started with basic tasks such
as reading/writing images or creating and manipulating images

e slide sets corresponding to the material covered in this book
e a BibTeX bibliography of the papers cited in this book.

The latter two resources may be of more interest to instructors and researchers publishing
new papers in this field, but they will probably come in handy even with regular students.
Some of the software libraries contain implementations of a wide variety of computer vision
algorithms, which can enable you to tackle more ambitious projects (with your instructor’s
consent).

Acknowledgements

I would like to gratefully acknowledge all of the people whose passion for research and
inquiry as well as encouragement have helped me write this book.

Steve Zucker at McGill University first introduced me to computer vision, taught all of
his students to question and debate research results and techniques, and encouraged me to
pursue a graduate career in this area.

Takeo Kanade and Geoff Hinton, my Ph. D. thesis advisors at Carnegie Mellon University,
taught me the fundamentals of good research, writing, and presentation. They fired up my
interest in visual processing, 3D modeling, and statistical methods, while Larry Matthies
introduced me to Kalman filtering and stereo matching.

Demetri Terzopoulos was my mentor at my first industrial research job and taught me the
ropes of successful publishing. Yvan Leclerc and Pascal Fua, colleagues from my brief in-
terlude at SRI International, gave me new perspectives on alternative approaches to computer
vision.

During my six years of research at Digital Equipment Corporation’s Cambridge Research
Lab, I was fortunate to work with a great set of colleagues, including Ingrid Carlbom, Gudrun
Klinker, Keith Waters, Richard Weiss, Stéphane Lavallée, and Sing Bing Kang, as well as to
supervise the first of a long string of outstanding summer interns, including David Tonnesen,
Sing Bing Kang, James Coughlan, and Harry Shum. This is also where I began my long-term
collaboration with Daniel Scharstein, now at Middlebury College.

http://szeliski.org/Book

X Computer Vision: Algorithms and Applications (September 3, 2010 draft)

At Microsoft Research, I've had the outstanding fortune to work with some of the world’s
best researchers in computer vision and computer graphics, including Michael Cohen, Hugues
Hoppe, Stephen Gortler, Steve Shafer, Matthew Turk, Harry Shum, Anandan, Phil Torr, An-
tonio Criminisi, Georg Petschnigg, Kentaro Toyama, Ramin Zabih, Shai Avidan, Sing Bing
Kang, Matt Uyttendaele, Patrice Simard, Larry Zitnick, Richard Hartley, Simon Winder,
Drew Steedly, Chris Pal, Nebojsa Jojic, Patrick Baudisch, Dani Lischinski, Matthew Brown,
Simon Baker, Michael Goesele, Eric Stollnitz, David Nistér, Blaise Aguera y Arcas, Sudipta
Sinha, Johannes Kopf, Neel Joshi, and Krishnan Ramnath. I was also lucky to have as in-
terns such great students as Polina Golland, Simon Baker, Mei Han, Arno Schédl, Ron Dror,
Ashley Eden, Jinxiang Chai, Rahul Swaminathan, Yanghai Tsin, Sam Hasinoff, Anat Levin,
Matthew Brown, Eric Bennett, Vaibhav Vaish, Jan-Michael Frahm, James Diebel, Ce Liu,
Josef Sivic, Grant Schindler, Colin Zheng, Neel Joshi, Sudipta Sinha, Zeev Farbman, Rahul
Garg, Tim Cho, Yekeun Jeong, Richard Roberts, Varsha Hedau, and Dilip Krishnan.

While working at Microsoft, I’ve also had the opportunity to collaborate with wonderful
colleagues at the University of Washington, where I hold an Affiliate Professor appointment.
I’m indebted to Tony DeRose and David Salesin, who first encouraged me to get involved
with the research going on at UW, my long-time collaborators Brian Curless, Steve Seitz,
Maneesh Agrawala, Sameer Agarwal, and Yasu Furukawa, as well as the students I have
had the privilege to supervise and interact with, including Fréderic Pighin, Yung-Yu Chuang,
Doug Zongker, Colin Zheng, Aseem Agarwala, Dan Goldman, Noah Snavely, Rahul Garg,
and Ryan Kaminsky. As I mentioned at the beginning of this preface, this book owes its
inception to the vision course that Steve Seitz invited me to co-teach, as well as to Steve’s
encouragement, course notes, and editorial input.

I’'m also grateful to the many other computer vision researchers who have given me so
many constructive suggestions about the book, including Sing Bing Kang, who was my infor-
mal book editor, Vladimir Kolmogorov, who contributed Appendix B.5.5 on linear program-
ming techniques for MRF inference, Daniel Scharstein, Richard Hartley, Simon Baker, Noah
Snavely, Bill Freeman, Svetlana Lazebnik, Matthew Turk, Jitendra Malik, Alyosha Efros,
Michael Black, Brian Curless, Sameer Agarwal, Li Zhang, Deva Ramanan, Olga Veksler,
Yuri Boykov, Carsten Rother, Phil Torr, Bill Triggs, Bruce Maxwell, Jana Kosecka, Eero Si-
moncelli, Aaron Hertzmann, Antonio Torralba, Tomaso Poggio, Theo Pavlidis, Baba Vemuri,
Nando de Freitas, Chuck Dyer, Song Yi, Falk Schubert, Roman Pflugfelder, Marshall Tap-
pen, James Coughlan, Sammy Rogmans, Klaus Strobel, Shanmuganathan, Andreas Siebert,
Yongjun Wu, Fred Pighin, Juan Cockburn, Ronald Mallet, Tim Soper, Georgios Evangelidis,
Dwight Fowler, Itzik Bayaz, Daniel O’Connor, and Srikrishna Bhat. Shena Deuchers did a
fantastic job copy-editing the book and suggesting many useful improvements and Wayne
Wheeler and Simon Rees at Springer were most helpful throughout the whole book pub-
lishing process. Keith Price’s Annotated Computer Vision Bibliography was invaluable in

Preface X1

tracking down references and finding related work.

If you have any suggestions for improving the book, please send me an e-mail, as I would
like to keep the book as accurate, informative, and timely as possible.

Lastly, this book would not have been possible or worthwhile without the incredible sup-
port and encouragement of my family. I dedicate this book to my parents, Zdzistaw and
Jadwiga, whose love, generosity, and accomplishments have always inspired me; to my sis-
ter Basia for her lifelong friendship; and especially to Lyn, Anne, and Stephen, whose daily
encouragement in all matters (including this book project) makes it all worthwhile.

Lake Wenatchee
August, 2010

Xii

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Contents

Preface

Contents

1 Introduction

2

1.1
1.2
1.3
1.4
1.5
1.6

Sample syllabus
Amnoteonnotation e e e e e e
Additional reading L.

Image formation

2.1

2.2

2.3

Geometric primitives and transformations
2.1.1 Geometric primitiveso
2.1.2 2D transformations
2.1.3 3D transformationsol
2.14 3Drotationso a i e e
2.1.5 3Dto2Dprojections
2.1.6 Lensdistortions
Photometric image formation oL
221 Lighting. o e
2.2.2 Reflectance and shading
223 OPLiCS .« v v e e e
The digital camera
2.3.1 Sampling and aliasing oo
232 Color e

233 Compression e

vii

xiii

10
19
26
27
28

X1V

3

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

24 Additional reading 93
2.5 EXEICISES . . o v v v i 93
Image processing 99
3.1 Pointoperators e e e e e 101
3.1.1 Pixeltransforms 103
3.1.2 Colortransforms L 104
3.1.3 Compositingand matting oo 105
3.1.4 Histogram equalization 107
3.1.5 Application: Tonal adjustment 111
3.2 Linearfiltering 111
3.2.1 Separable filteringo 115
3.2.2 Examples of linear filtering 117
3.2.3 Band-pass and steerable filters L. 118
3.3 More neighborhood operators 122
33.1 Non-linear filtering 0oL 122
332 Morphology 127
3.3.3 Distance transformso oo 129
3.3.4 Connected COMPONENLS . . .« . v v v v v v v v e et e et 131
3.4 Fourier transforms o 132
3.4.1 Fourier transformpairs 136
3.4.2 Two-dimensional Fourier transforms 140
343 Wienerfiltering 140
3.4.4 Application: Sharpening, blur, and noise removal 144
3.5 Pyramidsand wavelets 144
3.5.1 Imterpolation 145
352 Decimation Lo 148
3.5.3 Multi-resolution representations 150
354 Wavelets 154
3.5.5 Application: Imageblending, 160
3.6 Geometric transformationso 0oL 162
3.6.1 Parametric transformations 163
3.6.2 Mesh-based warping 170
3.6.3 Application: Feature-based morphing 173
3.7 Global optimization 174
3.7.1 Regularization 174
3.7.2 Markovrandomfields L. 180

3.7.3 Application: Image restoration 192

Contents

3.8
3.9

Additional reading Lo
Exercises

4 Feature detection and matching

4.1

4.2

4.3

4.4
45

Pointsandpatches L
4.1.1 Feature detectorso
4.1.2 Feature descriptorso i e
4.1.3 Featurematching
4.1.4 Featuretracking
4.1.5 Application: Performance-driven animation
Edges e
42.1 Edgedetection
422 Edgelinking
4.2.3 Application: Edge editing and enhancement
Lines e
4.3.1 Successive approximation
432 Houghtransforms.
4.3.3 Vanishingpoints
4.3.4 Application: Rectangle detection
Additional reading
Exercises e

5 Segmentation

5.1

52

53

ACHIVE CONTOUTS v v v vttt e e et e e e
S5.1.1 Snmakes
5.1.2 Dynamic snakes and CONDENSATION
S5.1.3 0 ScCiSSOrs
514 LevelSets oo
5.1.5 Application: Contour tracking and rotoscoping
Splitand merge
521 Watershed
5.2.2 Region splitting (divisive clustering)
5.2.3 Region merging (agglomerative clustering)
5.2.4 Graph-based segmentation
5.2.5 Probabilistic aggregation
Mean shift and mode finding L Lo
5.3.1 K-means and mixtures of Gaussians

5.32 Meanshift

XV

192
194

205
207
209
222
225
235
237
238
238
244
249
250
250
251
254
257
257
259

XVi

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

54 Normalizedcuts 296
5.5 Graph cuts and energy-based methods 300
5.5.1 Application: Medical image segmentation 304

5.6 Additionalreadingo 305
5.7 EXEICISES . . . v v v i e 306
Feature-based alignment 309
6.1 2D and 3D feature-based alignment 311
6.1.1 2D alignment using least squares 312

6.1.2 Application: Panography 314

6.1.3 TIterative algorithms 315

6.1.4 Robust least squares and RANSAC 318

6.1.5 3Dalignment 320

6.2 Poseestimation e 321
6.2.1 Linearalgorithms L. 322

6.2.2 Tterative algorithms, 324

6.2.3 Application: Augmented reality 326

6.3 Geometric intrinsic calibration 0oL 327
6.3.1 Calibrationpatterns 327

6.3.2 Vanishingpoints 329

6.3.3 Application: Single view metrology 331

6.3.4 Rotational motion 332

6.3.5 Radialdistortion L 334

6.4 Additional reading 335
6.5 EXercises e 336
Structure from motion 343
7.1 Triangulation 345
7.2 Two-frame structure frommotion 347
7.2.1 Projective (uncalibrated) reconstruction 353

7.2.2 Self-calibration L 355

7.2.3 Application: View morphing 357

7.3 Factorization 357
7.3.1 Perspective and projective factorization 360

7.3.2 Application: Sparse 3D model extraction 362

7.4 Bundle adjustment o 363
7.4.1 Exploiting sparsity 364

7.4.2 Application: Match move and augmented reality 368

Contents
7.4.3 Uncertainty and ambiguities
7.4.4 Application: Reconstruction from Internet photos
7.5 Constrained structure and motion
7.5.1 Line-based techniques
7.5.2 Plane-based techniques
7.6 Additional reading
7T EXEICISES . . v v v i et e e e e e e e e e e e e e e e e
8 Dense motion estimation
8.1 Translational alignment
8.1.1 Hierarchical motion estimation
8.1.2 Fourier-based alignment
8.1.3 Incremental refinement,
8.2 Parametricmotion.o
8.2.1 Application: Video stabilization
8.2.2 Learnedmotionmodels.
8.3 Spline-based motion oL
8.3.1 Application: Medical image registration
84 Opticalflow
8.4.1 Multi-frame motion estimation
8.4.2 Application: Video denoising
8.4.3 Application: De-interlacing L.
85 Layeredmotion
8.5.1 Application: Frame interpolation
8.5.2 Transparent layers and reflections
8.6 Additionalreading
87 EXercises

9 Image stitching

9.1

9.2

Motionmodels
9.1.1 Planar perspective motion
9.1.2 Application: Whiteboard and document scanning
9.1.3 Rotational panoramas.
9.14 Gapclosing
9.1.5 Application: Video summarization and compression
9.1.6 Cylindrical and spherical coordinates
Global alignment
9.2.1 Bundleadjustment L.

XVii

370
371
374
374
376
377
377

381
384
387
388
392
398
401
403
404
408
409
413
414
415
415
418
419
421
422

XVviii Computer Vision: Algorithms and Applications (September 3, 2010 draft)

10

11

9.2.2 Parallaxremoval 445
9.2.3 Recognizing panoramas 446
9.2.4 Direct vs. feature-based alignment 450
9.3 CompoSiting it e e e e 450
9.3.1 Choosing a compositing surface 451
9.3.2 Pixel selection and weighting (de-ghosting) 453
9.3.3 Application: Photomontage 459
934 Blending 459
9.4 Additionalreading 462
0.5 EXErCiSes v v v v i 463
Computational photography 467
10.1 Photometric calibration 470
10.1.1 Radiometric response function 470
10.1.2 Noise level estimation 473
10.1.3 Vignetting o e e e 474
10.1.4 Optical blur (spatial response) estimation 476
10.2 High dynamic range imaging e 479
10.2.1 Tonemapping o v v it i 487
10.2.2 Application: Flash photography 494
10.3 Super-resolution and blur removal Lo, 497
10.3.1 Color image demosaicing 502
10.3.2 Application: Colorization 504
10.4 Image matting and compositing 505
10.4.1 Bluescreenmatting. v vt 507
10.4.2 Natural image matting 509
10.4.3 Optimization-based matting 513
10.4.4 Smoke, shadow, and flash matting 516
10.4.5 Videomatting e 518
10.5 Texture analysis and synthesis 518
10.5.1 Application: Hole filling and inpainting 521
10.5.2 Application: Non-photorealistic rendering 522
10.6 Additional reading 524
10.7 EXEICiSeS . . . o v v v v i i e e e e e e e e 526
Stereo correspondence 533
11.1 Epipolar geometry e 537

11.1.1 Rectification e 538

Contents Xix
11.1.2 Plane sweep« c v v v v e e e e 540

11.2 Sparse correspondenceol 543
11.2.1 3Dcurvesandprofiles 543

11.3 Dense correspondenceo u e e e e 545
11.3.1 Similarity measures 546

11.4 Localmethods 548
11.4.1 Sub-pixel estimation and uncertainty 550
11.4.2 Application: Stereo-based head tracking 551

11.5 Global optimization i 552
11.5.1 Dynamic programming« . . oo v v e e 554
11.5.2 Segmentation-based techniques 556
11.5.3 Application: Z-keying and background replacement 558

11.6 Multi-VIew Stereo« v v v v v e et e e e e 558
11.6.1 Volumetric and 3D surface reconstruction 562
11.6.2 Shape from silhouettes, .. 567

11.7 Additional reading L o 570
I11.8 EXErcises o v v v ittt e e e e e e e 571
12 3D reconstruction 577
12.1 Shape from X e 580
12.1.1 Shape from shading and photometric stereo 580
12.1.2 Shape fromtexture 583
12.1.3 Shapefromfocus 584

12.2 Activerangefinding 585
12.2.1 Rangedatamerging 588
12.2.2 Application: Digital heritage 590

12.3 Surface representations 591
12.3.1 Surfaceinterpolation 592
12.3.2 Surface simplification L L. 594
12.3.3 Geometry images v v v v i i e e e e e e e e e 594

12.4 Point-based representations 595
12.5 Volumetric representations v . v i v e e e e 596
12.5.1 Implicit surfacesand levelsets 596

12.6 Model-based reconstructiono 598
12.6.1 Architecture. 598
12.6.2 Headsandfaces. 601
12.6.3 Application: Facial animation 603

12.6.4 Whole body modeling and tracking 605

XX Computer Vision: Algorithms and Applications (September 3, 2010 draft)
12.7 Recovering texture maps and albedos 610
12.7.1 Estimating BRDFs 612
12.7.2 Application: 3D photography 613

12.8 Additional reading L. 614
12.9 EXEICISES . « v v v v v e e e e e e e e e 616
13 Image-based rendering 619
13.1 Viewinterpolation. 621
13.1.1 View-dependent texture maps 623
13.1.2 Application: Photo Tourism 624

13.2 Layered depthimages 626
13.2.1 Impostors, sprites, and layers 626

13.3 Light fields and Lumigraphs 628
13.3.1 Unstructured Lumigraph 632
13.3.2 Surface lightfields 632
13.3.3 Application: Concentric moSaics« v v v v v v v vt ... 634

13.4 Environment matteso it et e e e e e e 634
13.4.1 Higher-dimensional light fields 636
13.4.2 The modeling to rendering continuum 637

13.5 Video-based rendering oL 638
13.5.1 Video-based animation 639
13.5.2 Videotextures 640
13.5.3 Application: Animating pictures 643
1354 3DVideo 643
13.5.5 Application: Video-based walkthroughs 645

13.6 Additional reading 648
13.7 EXErciSes o v v v v i i e e e e 650
14 Recognition 655
14.1 Objectdetection o v it 658
14.1.1 Facedetection 658
14.1.2 Pedestrian detection 666

14.2 Facerecognition v v v v v it e e e e e e 668
14.2.1 Eigenfaces 671
14.2.2 Active appearance and 3D shapemodels 679
14.2.3 Application: Personal photo collections 684

14.3 Instance recognition oot e e 685

14.3.1 Geometric alignment 686

Contents

15

143.2 Largedatabases
14.3.3 Application: Location recognition
14.4 Category recognition i e
14.4.1 Bagofwords
1442 Part-basedmodels Lo
14.4.3 Recognition with segmentation
14.4.4 Application: Intelligent photo editing
14.5 Context and scene understanding
14.5.1 Learning and large image collections
14.5.2 Application: Imagesearch
14.6 Recognition databases andtestsets
14.7 Additional reading
14.8 EXErcises

Conclusion

Linear algebra and numerical techniques

A.l Matrix decompositionso
A.1.1 Singular value decomposition
A.1.2 Eigenvalue decomposition
A.1.3 QR factorization
A.1.4 Cholesky factorization

A.2 Linearleastsquareso it e e
A2.1 Totalleastsquares

A.3 Non-linearleastsquares oo e

A.4 Direct sparse matrix techniques
A.4.1 Variablereordering

A5 Tterative techniqueso
A.5.1 Conjugate gradient
A.5.2 Preconditioning
AS53 Multigrido

Bayesian modeling and inference

B.1 Estimationtheory
B.1.1 Likelihood for multivariate Gaussian noise

B.2 Maximum likelihood estimation and least squares

B.3 Robuststatistics

B.4 Prior models and Bayesian inference

B.5 Markovrandomfields

XX1

687
693
696
697
701
704
709
712
714
717
718
722
725

731

735
736
736
737
740
741
742
744
746
747
748
748
749
751
753

XXii Computer Vision: Algorithms and Applications (September 3, 2010 draft)

B.5.1 Gradient descent and simulated annealing 765

B.5.2 Dynamic programming oe e 766

B.5.3 Belief propagation L o 768

B.5.4 Graphcuts 770

B.5.5 Linear programming e e 773

B.6 Uncertainty estimation (error analysis) 775

C Supplementary material 777
C.l Datasets. o it e e 778
C2 Software 780
C3 Slidesandlectures 789
C4 Bibliography 790
References 791

Index 933

Chapter 1

Introduction

1.1 Whatis computer vision? L. oL 3
1.2 Abriefhistory L 10
1.3 Bookoverview 19
1.4 Samplesyllabus oL 26
1.5 Amnoteonnotation e 27
1.6 Additional reading 28

Figure 1.1 The human visual system has no problem interpreting the subtle variations in
translucency and shading in this photograph and correctly segmenting the object from its
background.

2 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(d

Figure 1.2 Some examples of computer vision algorithms and applications. (a) Structure
from motion algorithms can reconstruct a sparse 3D point model of a large complex scene
from hundreds of partially overlapping photographs (Snavely, Seitz, and Szeliski 2006) (©
2006 ACM. (b) Stereo matching algorithms can build a detailed 3D model of a building facade
from hundreds of differently exposed photographs taken from the Internet (Goesele, Snavely,
Curless et al. 2007) (©) 2007 IEEE. (c) Person tracking algorithms can track a person walking
in front of a cluttered background (Sidenbladh, Black, and Fleet 2000) (©) 2000 Springer. (d)
Face detection algorithms, coupled with color-based clothing and hair detection algorithms,
can locate and recognize the individuals in this image (Sivic, Zitnick, and Szeliski 2006) (©)
2006 Springer.

1.1 What is computer vision? 3

1.1 What is computer vision?

As humans, we perceive the three-dimensional structure of the world around us with apparent
ease. Think of how vivid the three-dimensional percept is when you look at a vase of flowers
sitting on the table next to you. You can tell the shape and translucency of each petal through
the subtle patterns of light and shading that play across its surface and effortlessly segment
each flower from the background of the scene (Figure 1.1). Looking at a framed group por-
trait, you can easily count (and name) all of the people in the picture and even guess at their
emotions from their facial appearance. Perceptual psychologists have spent decades trying to
understand how the visual system works and, even though they can devise optical illusions'
to tease apart some of its principles (Figure 1.3), a complete solution to this puzzle remains
elusive (Marr 1982; Palmer 1999; Livingstone 2008).

Researchers in computer vision have been developing, in parallel, mathematical tech-
niques for recovering the three-dimensional shape and appearance of objects in imagery. We
now have reliable techniques for accurately computing a partial 3D model of an environment
from thousands of partially overlapping photographs (Figure 1.2a). Given a large enough
set of views of a particular object or facade, we can create accurate dense 3D surface mod-
els using stereo matching (Figure 1.2b). We can track a person moving against a complex
background (Figure 1.2c). We can even, with moderate success, attempt to find and name
all of the people in a photograph using a combination of face, clothing, and hair detection
and recognition (Figure 1.2d). However, despite all of these advances, the dream of having a
computer interpret an image at the same level as a two-year old (for example, counting all of
the animals in a picture) remains elusive. ~ Why is vision so difficult? In part, it is because
vision is an inverse problem, in which we seek to recover some unknowns given insufficient
information to fully specify the solution. We must therefore resort to physics-based and prob-
abilistic models to disambiguate between potential solutions. However, modeling the visual
world in all of its rich complexity is far more difficult than, say, modeling the vocal tract that
produces spoken sounds.

The forward models that we use in computer vision are usually developed in physics (ra-
diometry, optics, and sensor design) and in computer graphics. Both of these fields model
how objects move and animate, how light reflects off their surfaces, is scattered by the at-
mosphere, refracted through camera lenses (or human eyes), and finally projected onto a flat
(or curved) image plane. While computer graphics are not yet perfect (no fully computer-
animated movie with human characters has yet succeeded at crossing the uncanny valley”
that separates real humans from android robots and computer-animated humans), in limited

! http://www.michaelbach.de/ot/sze_muelue
2 The term uncanny valley was originally coined by roboticist Masahiro Mori as applied to robotics (Mori 1970).
It is also commonly applied to computer-animated films such as Final Fantasy and Polar Express (Geller 2008).

http://www.michaelbach.de/ot/sze_muelue

4 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

g

(a) (b)
EEEEE D i
.-... X X X X X X X O X X O X X O

X X X X X X X X X O X O 0O X
..... X X X X X X X O X X O X X X
.-.-. X X X X X X X X O X X X O X
..... X X X X X X X 0O X X O X X O

X X X X X X X X O X X X 0O X
..... X X X X X X X X X X O O X X
..... X X X X X X X X O X X X O X

(©) (d

Figure 1.3 Some common optical illusions and what they might tell us about the visual sys-
tem: (a) The classic Miiller-Lyer illusion, where the length of the two horizontal lines appear
different, probably due to the imagined perspective effects. (b) The “white” square B in the
shadow and the “black” square A in the light actually have the same absolute intensity value.
The percept is due to brightness constancy, the visual system’s attempt to discount illumi-
nation when interpreting colors. Image courtesy of Ted Adelson, http://web.mit.edu/persci/
people/adelson/checkershadow _illusion.html. (c) A variation of the Hermann grid illusion,
courtesy of Hany Farid, http://www.cs.dartmouth.edu/~farid/illusions/hermann.html. As you
move your eyes over the figure, gray spots appear at the intersections. (d) Count the red Xs
in the left half of the figure. Now count them in the right half. Is it significantly harder?
The explanation has to do with a pop-out effect (Treisman 1985), which tells us about the
operations of parallel perception and integration pathways in the brain.

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://www.cs.dartmouth.edu/~farid/illusions/hermann.html

1.1 What is computer vision? 5

domains, such as rendering a still scene composed of everyday objects or animating extinct
creatures such as dinosaurs, the illusion of reality is perfect.

In computer vision, we are trying to do the inverse, i.e., to describe the world that we see
in one or more images and to reconstruct its properties, such as shape, illumination, and color
distributions. It is amazing that humans and animals do this so effortlessly, while computer
vision algorithms are so error prone. People who have not worked in the field often under-
estimate the difficulty of the problem. (Colleagues at work often ask me for software to find
and name all the people in photos, so they can get on with the more “interesting” work.) This
misperception that vision should be easy dates back to the early days of artificial intelligence
(see Section 1.2), when it was initially believed that the cognitive (logic proving and plan-
ning) parts of intelligence were intrinsically more difficult than the perceptual components
(Boden 2006).

The good news is that computer vision is being used today in a wide variety of real-world
applications, which include:

e Optical character recognition (OCR): reading handwritten postal codes on letters
(Figure 1.4a) and automatic number plate recognition (ANPR);

e Machine inspection: rapid parts inspection for quality assurance using stereo vision
with specialized illumination to measure tolerances on aircraft wings or auto body parts
(Figure 1.4b) or looking for defects in steel castings using X-ray vision;

e Retail: object recognition for automated checkout lanes (Figure 1.4c);

e 3D model building (photogrammetry): fully automated construction of 3D models
from aerial photographs used in systems such as Bing Maps;

e Medical imaging: registering pre-operative and intra-operative imagery (Figure 1.4d)
or performing long-term studies of people’s brain morphology as they age;

e Automotive safety: detecting unexpected obstacles such as pedestrians on the street,
under conditions where active vision techniques such as radar or lidar do not work
well (Figure 1.4e; see also Miller, Campbell, Huttenlocher et al. (2008); Montemerlo,
Becker, Bhat et al. (2008); Urmson, Anhalt, Bagnell ez al. (2008) for examples of fully
automated driving);

e Match move: merging computer-generated imagery (CGI) with live action footage by
tracking feature points in the source video to estimate the 3D camera motion and shape
of the environment. Such techniques are widely used in Hollywood (e.g., in movies
such as Jurassic Park) (Roble 1999; Roble and Zafar 2009); they also require the use of
precise matting to insert new elements between foreground and background elements
(Chuang, Agarwala, Curless et al. 2002).

6 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

3440 looking comprall

»EyeQ Yoo +Vision Applications - AWS 4
Waad, Vi,
e
and mote
— ”
- & [
(e)

Figure 1.4 Some industrial applications of computer vision: (a) optical character recognition
(OCR) http://yann.lecun.com/exdb/lenet/; (b) mechanical inspection http://www.cognitens.
com/; (c) retail http://www.evoretail.com/; (d) medical imaging http://www.clarontech.com/;
(e) automotive safety http://www.mobileye.com/; (f) surveillance and traffic monitoring http:
/lwww.honeywellvideo.com/, courtesy of Honeywell International Inc.

http://yann.lecun.com/exdb/lenet/
http://www.cognitens.com/
http://www.cognitens.com/
http://www.evoretail.com/
http://www.clarontech.com/
http://www.mobileye.com/
http://www.honeywellvideo.com/
http://www.honeywellvideo.com/

1.1 What is computer vision? 7

Motion capture (mocap): using retro-reflective markers viewed from multiple cam-
eras or other vision-based techniques to capture actors for computer animation;

Surveillance: monitoring for intruders, analyzing highway traffic (Figure 1.4f), and
monitoring pools for drowning victims;

Fingerprint recognition and biometrics: for automatic access authentication as well
as forensic applications.

David Lowe’s Web site of industrial vision applications (http://www.cs.ubc.ca/spider/lowe/

vision.html) lists many other interesting industrial applications of computer vision. While the

above applications are all extremely important, they mostly pertain to fairly specialized kinds

of imagery and narrow domains.

In this book, we focus more on broader consumer-level applications, such as fun things

you can do with your own personal photographs and video. These include:

Stitching: turning overlapping photos into a single seamlessly stitched panorama (Fig-
ure 1.5a), as described in Chapter 9;

Exposure bracketing: merging multiple exposures taken under challenging lighting
conditions (strong sunlight and shadows) into a single perfectly exposed image (Fig-
ure 1.5b), as described in Section 10.2;

Morphing: turning a picture of one of your friends into another, using a seamless
morph transition (Figure 1.5¢);

3D modeling: converting one or more snapshots into a 3D model of the object or
person you are photographing (Figure 1.5d), as described in Section 12.6

Video match move and stabilization: inserting 2D pictures or 3D models into your
videos by automatically tracking nearby reference points (see Section 7.4.2)> or using
motion estimates to remove shake from your videos (see Section 8.2.1);

Photo-based walkthroughs: navigating a large collection of photographs, such as the
interior of your house, by flying between different photos in 3D (see Sections 13.1.2
and 13.5.5)

Face detection: for improved camera focusing as well as more relevant image search-
ing (see Section 14.1.1);

Visual authentication: automatically logging family members onto your home com-
puter as they sit down in front of the webcam (see Section 14.2).

http://www.cs.ubc.ca/spider/lowe/vision.html
http://www.cs.ubc.ca/spider/lowe/vision.html

8 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

Input Photographs 2D Sketching Interface Geometric Model Texture-mapped model

(d)

Figure 1.5 Some consumer applications of computer vision: (a) image stitching: merging
different views (Szeliski and Shum 1997) © 1997 ACM; (b) exposure bracketing: merging
different exposures; (c) morphing: blending between two photographs (Gomes, Darsa, Costa
et al. 1999) © 1999 Morgan Kaufmann; (d) turning a collection of photographs into a 3D
model (Sinha, Steedly, Szeliski er al. 2008) (©) 2008 ACM.

1.1 What is computer vision? 9

The great thing about these applications is that they are already familiar to most students;
they are, at least, technologies that students can immediately appreciate and use with their
own personal media. Since computer vision is a challenging topic, given the wide range
of mathematics being covered* and the intrinsically difficult nature of the problems being
solved, having fun and relevant problems to work on can be highly motivating and inspiring.

The other major reason why this book has a strong focus on applications is that they can
be used to formulate and constrain the potentially open-ended problems endemic in vision.
For example, if someone comes to me and asks for a good edge detector, my first question is
usually to ask why? What kind of problem are they trying to solve and why do they believe
that edge detection is an important component? If they are trying to locate faces, I usually
point out that most successful face detectors use a combination of skin color detection (Exer-
cise 2.8) and simple blob features Section 14.1.1; they do not rely on edge detection. If they
are trying to match door and window edges in a building for the purpose of 3D reconstruction,
I tell them that edges are a fine idea but it is better to tune the edge detector for long edges
(see Sections 3.2.3 and 4.2) and link them together into straight lines with common vanishing
points before matching (see Section 4.3).

Thus, it is better to think back from the problem at hand to suitable techniques, rather
than to grab the first technique that you may have heard of. This kind of working back from
problems to solutions is typical of an engineering approach to the study of vision and reflects
my own background in the field. First, I come up with a detailed problem definition and
decide on the constraints and specifications for the problem. Then, I try to find out which
techniques are known to work, implement a few of these, evaluate their performance, and
finally make a selection. In order for this process to work, it is important to have realistic test
data, both synthetic, which can be used to verify correctness and analyze noise sensitivity,
and real-world data typical of the way the system will finally be used.

However, this book is not just an engineering text (a source of recipes). It also takes a
scientific approach to basic vision problems. Here, I try to come up with the best possible
models of the physics of the system at hand: how the scene is created, how light interacts
with the scene and atmospheric effects, and how the sensors work, including sources of noise
and uncertainty. The task is then to try to invert the acquisition process to come up with the
best possible description of the scene.

The book often uses a statistical approach to formulating and solving computer vision
problems. Where appropriate, probability distributions are used to model the scene and the
noisy image acquisition process. The association of prior distributions with unknowns is often

3 For a fun student project on this topic, see the “PhotoBook” project at http://www.cc.gatech.edu/dvfx/videos/
dvfx2005.html.

4 These techniques include physics, Euclidean and projective geometry, statistics, and optimization. They make
computer vision a fascinating field to study and a great way to learn techniques widely applicable in other fields.

http://www.cc.gatech.edu/dvfx/videos/dvfx2005.html
http://www.cc.gatech.edu/dvfx/videos/dvfx2005.html

10 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

called Bayesian modeling (Appendix B). It is possible to associate a risk or loss function with
mis-estimating the answer (Section B.2) and to set up your inference algorithm to minimize
the expected risk. (Consider a robot trying to estimate the distance to an obstacle: it is
usually safer to underestimate than to overestimate.) With statistical techniques, it often helps
to gather lots of training data from which to learn probabilistic models. Finally, statistical
approaches enable you to use proven inference techniques to estimate the best answer (or
distribution of answers) and to quantify the uncertainty in the resulting estimates.

Because so much of computer vision involves the solution of inverse problems or the esti-
mation of unknown quantities, my book also has a heavy emphasis on algorithms, especially
those that are known to work well in practice. For many vision problems, it is all too easy to
come up with a mathematical description of the problem that either does not match realistic
real-world conditions or does not lend itself to the stable estimation of the unknowns. What
we need are algorithms that are both robust to noise and deviation from our models and rea-
sonably efficient in terms of run-time resources and space. In this book, I go into these issues
in detail, using Bayesian techniques, where applicable, to ensure robustness, and efficient
search, minimization, and linear system solving algorithms to ensure efficiency. Most of the
algorithms described in this book are at a high level, being mostly a list of steps that have to
be filled in by students or by reading more detailed descriptions elsewhere. In fact, many of
the algorithms are sketched out in the exercises.

Now that I’ve described the goals of this book and the frameworks that I use, I devote the
rest of this chapter to two additional topics. Section 1.2 is a brief synopsis of the history of
computer vision. It can easily be skipped by those who want to get to “the meat” of the new
material in this book and do not care as much about who invented what when.

The second is an overview of the book’s contents, Section 1.3, which is useful reading for
everyone who intends to make a study of this topic (or to jump in partway, since it describes
chapter inter-dependencies). This outline is also useful for instructors looking to structure
one or more courses around this topic, as it provides sample curricula based on the book’s
contents.

1.2 A brief history

In this section, I provide a brief personal synopsis of the main developments in computer
vision over the last 30 years (Figure 1.6); at least, those that I find personally interesting
and which appear to have stood the test of time. Readers not interested in the provenance
of various ideas and the evolution of this field should skip ahead to the book overview in
Section 1.3.

1.2 A brief history 11

o D w»w o v C 9V DO 5L DS VW Y DY CC LY DS C Y DD >C @ Cc D
.EEEE‘C’%E.QE.E8’8.5.923.5E.Q.ES.E.Q.QB.E.E.EE_.QE.E.E
2T 2 2 0 8% 5 E LSO T RLEEDIRBRL2COCSSEBESETsEcES EC
E S S0 E-R2SdRBESRNRLFELESNScs2E58835E5S5EE s
oOo®<S 2 =& 5 0o €T 6 ¢ = © = S = € & oc 8 222205 Do
S =250, .8 > 8 % Cc S ES 0 25 FY sFE 8 E S 29 o Q I
S Oy aL s g @ S ES § S EL Q25 0ED L ELSE 20
S 2o 82235 0 3 E . S8 E£ES 7082805508 -2 eTQ
e=gEEEOCEPy2egssgzle £853I8525, 8>
- N = @ = S 0 T = 13 = S =3 =
8§ 8= 6 Qg E L e S e g X S S5 c &8 T © £ &
= © & O £ E o o% S 3 L o o » a D
Ess82g 2-923% z 92 g *823% €525
ss35>¢ s 222> 2 2¢g =2 8EP9 2% 37 ES
28 3] s S P T = s o o =) g £E&8gE0
S X n n 9 o = 29 S S S
=235 (2] ‘5 > o) 2 o - > o =
A o > (nEﬂSDC
=2 > ™ o 2@ @ oS
o = CCU L S w
o u g S O
c =
L)
'_

Figure 1.6 A rough timeline of some of the most active topics of research in computer
vision.

1970s. When computer vision first started out in the early 1970s, it was viewed as the
visual perception component of an ambitious agenda to mimic human intelligence and to
endow robots with intelligent behavior. At the time, it was believed by some of the early
pioneers of artificial intelligence and robotics (at places such as MIT, Stanford, and CMU)
that solving the “visual input” problem would be an easy step along the path to solving more
difficult problems such as higher-level reasoning and planning. According to one well-known
story, in 1966, Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman
to “spend the summer linking a camera to a computer and getting the computer to describe
what it saw” (Boden 2006, p. 781).> We now know that the problem is slightly more difficult
than that.®

What distinguished computer vision from the already existing field of digital image pro-
cessing (Rosenfeld and Pfaltz 1966; Rosenfeld and Kak 1976) was a desire to recover the
three-dimensional structure of the world from images and to use this as a stepping stone to-
wards full scene understanding. Winston (1975) and Hanson and Riseman (1978) provide
two nice collections of classic papers from this early period.

Early attempts at scene understanding involved extracting edges and then inferring the
3D structure of an object or a “blocks world” from the topological structure of the 2D lines
(Roberts 1965). Several line labeling algorithms (Figure 1.7a) were developed at that time
(Huffman 1971; Clowes 1971; Waltz 1975; Rosenfeld, Hummel, and Zucker 1976; Kanade
1980). Nalwa (1993) gives a nice review of this area. The topic of edge detection was also

5 Boden (2006) cites (Crevier 1993) as the original source. The actual Vision Memo was authored by Seymour
Papert (1966) and involved a whole cohort of students.

6 To see how far robotic vision has come in the last four decades, have a look at the towel-folding robot at
http://rll.eecs.berkeley.edu/pr/icral0/ (Maitin-Shepard, Cusumano-Towner, Lei ez al. 2010).

http://rll.eecs.berkeley.edu/pr/icra10/

12 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

_HUMAN

(d) (e) ()

Figure 1.7 Some early (1970s) examples of computer vision algorithms: (a) line label-
ing (Nalwa 1993) © 1993 Addison-Wesley, (b) pictorial structures (Fischler and Elschlager
1973) (© 1973 IEEE, (¢) articulated body model (Marr 1982) () 1982 David Marr, (d) intrin-
sic images (Barrow and Tenenbaum 1981) (© 1973 IEEE, (e) stereo correspondence (Marr
1982) (© 1982 David Marr, (f) optical flow (Nagel and Enkelmann 1986) (©) 1986 IEEE.

an active area of research; a nice survey of contemporaneous work can be found in (Davis
1975).

Three-dimensional modeling of non-polyhedral objects was also being studied (Baum-
gart 1974; Baker 1977). One popular approach used generalized cylinders, i.e., solids of
revolution and swept closed curves (Agin and Binford 1976; Nevatia and Binford 1977), of-
ten arranged into parts relationships’ (Hinton 1977; Marr 1982) (Figure 1.7c). Fischler and
Elschlager (1973) called such elastic arrangements of parts pictorial structures (Figure 1.7b).
This is currently one of the favored approaches being used in object recognition (see Sec-
tion 14.4 and Felzenszwalb and Huttenlocher 2005).

A qualitative approach to understanding intensities and shading variations and explaining
them by the effects of image formation phenomena, such as surface orientation and shadows,
was championed by Barrow and Tenenbaum (1981) in their paper on intrinsic images (Fig-
ure 1.7d), along with the related 2% -D sketch ideas of Marr (1982). This approach is again
seeing a bit of a revival in the work of Tappen, Freeman, and Adelson (2005).

More quantitative approaches to computer vision were also developed at the time, in-
cluding the first of many feature-based stereo correspondence algorithms (Figure 1.7¢) (Dev

7 In robotics and computer animation, these linked-part graphs are often called kinematic chains.

1.2 A brief history 13

1974; Marr and Poggio 1976; Moravec 1977; Marr and Poggio 1979; Mayhew and Frisby
1981; Baker 1982; Barnard and Fischler 1982; Ohta and Kanade 1985; Grimson 1985; Pol-
lard, Mayhew, and Frisby 1985; Prazdny 1985) and intensity-based optical flow algorithms
(Figure 1.7f) (Horn and Schunck 1981; Huang 1981; Lucas and Kanade 1981; Nagel 1986).
The early work in simultaneously recovering 3D structure and camera motion (see Chapter 7)
also began around this time (Ullman 1979; Longuet-Higgins 1981).

A lot of the philosophy of how vision was believed to work at the time is summarized
in David Marr’s (1982) book.® In particular, Marr introduced his notion of the three levels
of description of a (visual) information processing system. These three levels, very loosely
paraphrased according to my own interpretation, are:

e Computational theory: What is the goal of the computation (task) and what are the
constraints that are known or can be brought to bear on the problem?

¢ Representations and algorithms: How are the input, output, and intermediate infor-
mation represented and which algorithms are used to calculate the desired result?

e Hardware implementation: How are the representations and algorithms mapped onto
actual hardware, e.g., a biological vision system or a specialized piece of silicon? Con-
versely, how can hardware constraints be used to guide the choice of representation
and algorithm? With the increasing use of graphics chips (GPUs) and many-core ar-
chitectures for computer vision (see Section C.2), this question is again becoming quite
relevant.

As I mentioned earlier in this introduction, it is my conviction that a careful analysis of the
problem specification and known constraints from image formation and priors (the scientific
and statistical approaches) must be married with efficient and robust algorithms (the engineer-
ing approach) to design successful vision algorithms. Thus, it seems that Marr’s philosophy
is as good a guide to framing and solving problems in our field today as it was 25 years ago.

1980s. In the 1980s, a lot of attention was focused on more sophisticated mathematical
techniques for performing quantitative image and scene analysis.

Image pyramids (see Section 3.5) started being widely used to perform tasks such as im-
age blending (Figure 1.8a) and coarse-to-fine correspondence search (Rosenfeld 1980; Burt
and Adelson 1983a,b; Rosenfeld 1984; Quam 1984; Anandan 1989). Continuous versions
of pyramids using the concept of scale-space processing were also developed (Witkin 1983;
Witkin, Terzopoulos, and Kass 1986; Lindeberg 1990). In the late 1980s, wavelets (see Sec-
tion 3.5.4) started displacing or augmenting regular image pyramids in some applications

8 More recent developments in visual perception theory are covered in (Palmer 1999; Livingstone 2008).

14 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 1.8 Examples of computer vision algorithms from the 1980s: (a) pyramid blending
(Burt and Adelson 1983b) © 1983 ACM, (b) shape from shading (Freeman and Adelson
1991) © 1991 IEEE, (c) edge detection (Freeman and Adelson 1991) © 1991 IEEE, (d)
physically based models (Terzopoulos and Witkin 1988) (©) 1988 IEEE, (e) regularization-
based surface reconstruction (Terzopoulos 1988) © 1988 IEEE, (f) range data acquisition
and merging (Banno, Masuda, Oishi et al. 2008) (©) 2008 Springer.

(Adelson, Simoncelli, and Hingorani 1987; Mallat 1989; Simoncelli and Adelson 1990a,b;
Simoncelli, Freeman, Adelson et al. 1992).

The use of stereo as a quantitative shape cue was extended by a wide variety of shape-
from-X techniques, including shape from shading (Figure 1.8b) (see Section 12.1.1 and Horn
1975; Pentland 1984; Blake, Zimmerman, and Knowles 1985; Horn and Brooks 1986, 1989),
photometric stereo (see Section 12.1.1 and Woodham 1981), shape from texture (see Sec-
tion 12.1.2 and Witkin 1981; Pentland 1984; Malik and Rosenholtz 1997), and shape from
focus (see Section 12.1.3 and Nayar, Watanabe, and Noguchi 1995). Horn (1986) has a nice
discussion of most of these techniques.

Research into better edge and contour detection (Figure 1.8c) (see Section 4.2) was also
active during this period (Canny 1986; Nalwa and Binford 1986), including the introduc-
tion of dynamically evolving contour trackers (Section 5.1.1) such as snakes (Kass, Witkin,
and Terzopoulos 1988), as well as three-dimensional physically based models (Figure 1.8d)
(Terzopoulos, Witkin, and Kass 1987; Kass, Witkin, and Terzopoulos 1988; Terzopoulos and
Fleischer 1988; Terzopoulos, Witkin, and Kass 1988).

Researchers noticed that a lot of the stereo, flow, shape-from-X, and edge detection al-

1.2 A brief history 15

gorithms could be unified, or at least described, using the same mathematical framework if
they were posed as variational optimization problems (see Section 3.7) and made more ro-
bust (well-posed) using regularization (Figure 1.8e) (see Section 3.7.1 and Terzopoulos 1983;
Poggio, Torre, and Koch 1985; Terzopoulos 1986b; Blake and Zisserman 1987; Bertero, Pog-
gio, and Torre 1988; Terzopoulos 1988). Around the same time, Geman and Geman (1984)
pointed out that such problems could equally well be formulated using discrete Markov Ran-
dom Field (MRF) models (see Section 3.7.2), which enabled the use of better (global) search
and optimization algorithms, such as simulated annealing.

Online variants of MRF algorithms that modeled and updated uncertainties using the
Kalman filter were introduced a little later (Dickmanns and Graefe 1988; Matthies, Kanade,
and Szeliski 1989; Szeliski 1989). Attempts were also made to map both regularized and
MREF algorithms onto parallel hardware (Poggio and Koch 1985; Poggio, Little, Gamble
et al. 1988; Fischler, Firschein, Barnard et al. 1989). The book by Fischler and Firschein
(1987) contains a nice collection of articles focusing on all of these topics (stereo, flow,
regularization, MRFs, and even higher-level vision).

Three-dimensional range data processing (acquisition, merging, modeling, and recogni-
tion; see Figure 1.8f) continued being actively explored during this decade (Agin and Binford
1976; Besl and Jain 1985; Faugeras and Hebert 1987; Curless and Levoy 1996). The compi-
lation by Kanade (1987) contains a lot of the interesting papers in this area.

1990s. While a lot of the previously mentioned topics continued to be explored, a few of
them became significantly more active.

A burst of activity in using projective invariants for recognition (Mundy and Zisserman
1992) evolved into a concerted effort to solve the structure from motion problem (see Chap-
ter 7). A lot of the initial activity was directed at projective reconstructions, which did not
require knowledge of camera calibration (Faugeras 1992; Hartley, Gupta, and Chang 1992;
Hartley 1994a; Faugeras and Luong 2001; Hartley and Zisserman 2004). Simultaneously, fac-
torization techniques (Section 7.3) were developed to solve efficiently problems for which or-
thographic camera approximations were applicable (Figure 1.9a) (Tomasi and Kanade 1992;
Poelman and Kanade 1997; Anandan and Irani 2002) and then later extended to the perspec-
tive case (Christy and Horaud 1996; Triggs 1996). Eventually, the field started using full
global optimization (see Section 7.4 and Taylor, Kriegman, and Anandan 1991; Szeliski and
Kang 1994; Azarbayejani and Pentland 1995), which was later recognized as being the same
as the bundle adjustment techniques traditionally used in photogrammetry (Triggs, McLauch-
lan, Hartley et al. 1999). Fully automated (sparse) 3D modeling systems were built using such
techniques (Beardsley, Torr, and Zisserman 1996; Schaffalitzky and Zisserman 2002; Brown
and Lowe 2003; Snavely, Seitz, and Szeliski 2006).

Work begun in the 1980s on using detailed measurements of color and intensity combined

16 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 1.9 Examples of computer vision algorithms from the 1990s: (a) factorization-based
structure from motion (Tomasi and Kanade 1992) (©) 1992 Springer, (b) dense stereo match-
ing (Boykov, Veksler, and Zabih 2001), (c¢) multi-view reconstruction (Seitz and Dyer 1999)
© 1999 Springer, (d) face tracking (Matthews, Xiao, and Baker 2007), (e) image segmenta-
tion (Belongie, Fowlkes, Chung et al. 2002) (©) 2002 Springer, (f) face recognition (Turk and
Pentland 1991a).

with accurate physical models of radiance transport and color image formation created its own
subfield known as physics-based vision. A good survey of the field can be found in the three-
volume collection on this topic (Wolff, Shafer, and Healey 1992a; Healey and Shafer 1992;
Shafer, Healey, and Wolff 1992).

Optical flow methods (see Chapter 8) continued to be improved (Nagel and Enkelmann
1986; Bolles, Baker, and Marimont 1987; Horn and Weldon Jr. 1988; Anandan 1989; Bergen,
Anandan, Hanna et al. 1992; Black and Anandan 1996; Bruhn, Weickert, and Schnérr 2005;
Papenberg, Bruhn, Brox et al. 2006), with (Nagel 1986; Barron, Fleet, and Beauchemin 1994;
Baker, Black, Lewis et al. 2007) being good surveys. Similarly, a lot of progress was made
on dense stereo correspondence algorithms (see Chapter 11, Okutomi and Kanade (1993,
1994); Boykov, Veksler, and Zabih (1998); Birchfield and Tomasi (1999); Boykov, Veksler,
and Zabih (2001), and the survey and comparison in Scharstein and Szeliski (2002)), with
the biggest breakthrough being perhaps global optimization using graph cut techniques (Fig-
ure 1.9b) (Boykov, Veksler, and Zabih 2001).

1.2 A brief history 17

Multi-view stereo algorithms (Figure 1.9¢) that produce complete 3D surfaces (see Sec-
tion 11.6) were also an active topic of research (Seitz and Dyer 1999; Kutulakos and Seitz
2000) that continues to be active today (Seitz, Curless, Diebel et al. 2006). Techniques for
producing 3D volumetric descriptions from binary silhouettes (see Section 11.6.2) continued
to be developed (Potmesil 1987; Srivasan, Liang, and Hackwood 1990; Szeliski 1993; Lau-
rentini 1994), along with techniques based on tracking and reconstructing smooth occluding
contours (see Section 11.2.1 and Cipolla and Blake 1992; Vaillant and Faugeras 1992; Zheng
1994; Boyer and Berger 1997; Szeliski and Weiss 1998; Cipolla and Giblin 2000).

Tracking algorithms also improved a lot, including contour tracking using active contours
(see Section 5.1), such as snakes (Kass, Witkin, and Terzopoulos 1988), particle filters (Blake
and Isard 1998), and level sets (Malladi, Sethian, and Vemuri 1995), as well as intensity-based
(direct) techniques (Lucas and Kanade 1981; Shi and Tomasi 1994; Rehg and Kanade 1994),
often applied to tracking faces (Figure 1.9d) (Lanitis, Taylor, and Cootes 1997; Matthews and
Baker 2004; Matthews, Xiao, and Baker 2007) and whole bodies (Sidenbladh, Black, and
Fleet 2000; Hilton, Fua, and Ronfard 2006; Moeslund, Hilton, and Kriiger 2006).

Image segmentation (see Chapter 5) (Figure 1.9¢), a topic which has been active since
the earliest days of computer vision (Brice and Fennema 1970; Horowitz and Pavlidis 1976;
Riseman and Arbib 1977; Rosenfeld and Davis 1979; Haralick and Shapiro 1985; Pavlidis
and Liow 1990), was also an active topic of research, producing techniques based on min-
imum energy (Mumford and Shah 1989) and minimum description length (Leclerc 1989),
normalized cuts (Shi and Malik 2000), and mean shift (Comaniciu and Meer 2002).

Statistical learning techniques started appearing, first in the application of principal com-
ponent eigenface analysis to face recognition (Figure 1.9f) (see Section 14.2.1 and Turk and
Pentland 1991a) and linear dynamical systems for curve tracking (see Section 5.1.1 and Blake
and Isard 1998).

Perhaps the most notable development in computer vision during this decade was the
increased interaction with computer graphics (Seitz and Szeliski 1999), especially in the
cross-disciplinary area of image-based modeling and rendering (see Chapter 13). The idea of
manipulating real-world imagery directly to create new animations first came to prominence
with image morphing techniques (Figurel.5c) (see Section 3.6.3 and Beier and Neely 1992)
and was later applied to view interpolation (Chen and Williams 1993; Seitz and Dyer 1996),
panoramic image stitching (Figurel.5a) (see Chapter 9 and Mann and Picard 1994; Chen
1995; Szeliski 1996; Szeliski and Shum 1997; Szeliski 2006a), and full light-field rendering
(Figure 1.10a) (see Section 13.3 and Gortler, Grzeszczuk, Szeliski et al. 1996; Levoy and
Hanrahan 1996; Shade, Gortler, He er al. 1998). At the same time, image-based modeling
techniques (Figure 1.10b) for automatically creating realistic 3D models from collections of
images were also being introduced (Beardsley, Torr, and Zisserman 1996; Debevec, Taylor,
and Malik 1996; Taylor, Debevec, and Malik 1996).

18 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(d)

Figure 1.10 Recent examples of computer vision algorithms: (a) image-based rendering
(Gortler, Grzeszczuk, Szeliski et al. 1996), (b) image-based modeling (Debevec, Taylor, and
Malik 1996) (©) 1996 ACM, (c) interactive tone mapping (Lischinski, Farbman, Uyttendaele
et al. 2006a) (d) texture synthesis (Efros and Freeman 2001), (e) feature-based recognition
(Fergus, Perona, and Zisserman 2007), (f) region-based recognition (Mori, Ren, Efros et al.
2004) © 2004 1IEEE.

2000s. This past decade has continued to see a deepening interplay between the vision and
graphics fields. In particular, many of the topics introduced under the rubric of image-based
rendering, such as image stitching (see Chapter 9), light-field capture and rendering (see
Section 13.3), and high dynamic range (HDR) image capture through exposure bracketing
(Figurel.5b) (see Section 10.2 and Mann and Picard 1995; Debevec and Malik 1997), were
re-christened as computational photography (see Chapter 10) to acknowledge the increased
use of such techniques in everyday digital photography. For example, the rapid adoption of
exposure bracketing to create high dynamic range images necessitated the development of
tone mapping algorithms (Figure 1.10c) (see Section 10.2.1) to convert such images back
to displayable results (Fattal, Lischinski, and Werman 2002; Durand and Dorsey 2002; Rein-
hard, Stark, Shirley et al. 2002; Lischinski, Farbman, Uyttendaele ez al. 2006a). In addition to
merging multiple exposures, techniques were developed to merge flash images with non-flash
counterparts (Eisemann and Durand 2004; Petschnigg, Agrawala, Hoppe ef al. 2004) and to
interactively or automatically select different regions from overlapping images (Agarwala,

1.3 Book overview 19

Dontcheva, Agrawala et al. 2004).

Texture synthesis (Figure 1.10d) (see Section 10.5), quilting (Efros and Leung 1999; Efros
and Freeman 2001; Kwatra, Schodl, Essa et al. 2003) and inpainting (Bertalmio, Sapiro,
Caselles et al. 2000; Bertalmio, Vese, Sapiro et al. 2003; Criminisi, Pérez, and Toyama 2004)
are additional topics that can be classified as computational photography techniques, since
they re-combine input image samples to produce new photographs.

A second notable trend during this past decade has been the emergence of feature-based
techniques (combined with learning) for object recognition (see Section 14.3 and Ponce,
Hebert, Schmid et al. 2006). Some of the notable papers in this area include the constellation
model of Fergus, Perona, and Zisserman (2007) (Figure 1.10e) and the pictorial structures
of Felzenszwalb and Huttenlocher (2005). Feature-based techniques also dominate other
recognition tasks, such as scene recognition (Zhang, Marszalek, Lazebnik et al. 2007) and
panorama and location recognition (Brown and Lowe 2007; Schindler, Brown, and Szeliski
2007). And while interest point (patch-based) features tend to dominate current research,
some groups are pursuing recognition based on contours (Belongie, Malik, and Puzicha 2002)
and region segmentation (Figure 1.10f) (Mori, Ren, Efros et al. 2004).

Another significant trend from this past decade has been the development of more efficient
algorithms for complex global optimization problems (see Sections 3.7 and B.5 and Szeliski,
Zabih, Scharstein er al. 2008; Blake, Kohli, and Rother 2010). While this trend began with
work on graph cuts (Boykov, Veksler, and Zabih 2001; Kohli and Torr 2007), a lot of progress
has also been made in message passing algorithms, such as loopy belief propagation (LBP)
(Yedidia, Freeman, and Weiss 2001; Kumar and Torr 2006).

The final trend, which now dominates a lot of the visual recognition research in our com-
munity, is the application of sophisticated machine learning techniques to computer vision
problems (see Section 14.5.1 and Freeman, Perona, and Scholkopf 2008). This trend coin-
cides with the increased availability of immense quantities of partially labelled data on the
Internet, which makes it more feasible to learn object categories without the use of careful
human supervision.

1.3 Book overview

In the final part of this introduction, I give a brief tour of the material in this book, as well
as a few notes on notation and some additional general references. Since computer vision is
such a broad field, it is possible to study certain aspects of it, e.g., geometric image formation
and 3D structure recovery, without engaging other parts, e.g., the modeling of reflectance and
shading. Some of the chapters in this book are only loosely coupled with others, and it is not
strictly necessary to read all of the material in sequence.

20

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

image processing
C\v vision
—_— Geometry (3D Photomet
Images (2D) ; shage() appearan(r:%
graphics
2.3 Sampling i 2.1 Geometric 2.2 Photometric
and aliasing image formation image formation
v i
3 Image
processing !
v i
4 Feature
detection
| E \ A
5 Segmentation ! 6 Feature-based
! alignment
v | l v
8 Motion 7 Structure
estimation from motion
[¥ L e
> 9 Stitching
[v ™ 3
10 Computational 11 Stereo
photography correspondence
I v v
12 3D shape > 12 Texture
recovery recovery
L v ¥
13 Image-based
rendering

14 Recognition

Figure 1.11 Relationship between images, geometry, and photometry, as well as a taxonomy
of the topics covered in this book. Topics are roughly positioned along the left-right axis
depending on whether they are more closely related to image-based (left), geometry-based
(middle) or appearance-based (right) representations, and on the vertical axis by increasing
level of abstraction. The whole figure should be taken with a large grain of salt, as there are
many additional subtle connections between topics not illustrated here.

1.3 Book overview 21

Figure 1.11 shows a rough layout of the contents of this book. Since computer vision
involves going from images to a structural description of the scene (and computer graphics
the converse), I have positioned the chapters horizontally in terms of which major component
they address, in addition to vertically according to their dependence.

Going from left to right, we see the major column headings as Images (which are 2D
in nature), Geometry (which encompasses 3D descriptions), and Photometry (which encom-
passes object appearance). (An alternative labeling for these latter two could also be shape
and appearance—see, e.g., Chapter 13 and Kang, Szeliski, and Anandan (2000).) Going
from top to bottom, we see increasing levels of modeling and abstraction, as well as tech-
niques that build on previously developed algorithms. Of course, this taxonomy should be
taken with a large grain of salt, as the processing and dependencies in this diagram are not
strictly sequential and subtle additional dependencies and relationships also exist (e.g., some
recognition techniques make use of 3D information). The placement of topics along the hor-
izontal axis should also be taken lightly, as most vision algorithms involve mapping between
at least two different representations.’

Interspersed throughout the book are sample applications, which relate the algorithms
and mathematical material being presented in various chapters to useful, real-world applica-
tions. Many of these applications are also presented in the exercises sections, so that students
can write their own.

At the end of each section, I provide a set of exercises that the students can use to imple-
ment, test, and refine the algorithms and techniques presented in each section. Some of the
exercises are suitable as written homework assignments, others as shorter one-week projects,
and still others as open-ended research problems that make for challenging final projects.
Motivated students who implement a reasonable subset of these exercises will, by the end of
the book, have a computer vision software library that can be used for a variety of interesting
tasks and projects.

As a reference book, I try wherever possible to discuss which techniques and algorithms
work well in practice, as well as providing up-to-date pointers to the latest research results in
the areas that I cover. The exercises can be used to build up your own personal library of self-
tested and validated vision algorithms, which is more worthwhile in the long term (assuming
you have the time) than simply pulling algorithms out of a library whose performance you do
not really understand.

The book begins in Chapter 2 with a review of the image formation processes that create
the images that we see and capture. Understanding this process is fundamental if you want
to take a scientific (model-based) approach to computer vision. Students who are eager to
just start implementing algorithms (or courses that have limited time) can skip ahead to the

9 For an interesting comparison with what is known about the human visual system, e.g., the largely parallel what
and where pathways, see some textbooks on human perception (Palmer 1999; Livingstone 2008).

22 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

2. Image Formation 3. Image Processing 4. Features

5. Segmentation 8. Motion

9. Stitching 11. Stereo

12. 3D Shape 13. Image-based Rendering 14. Recognition

Figure 1.12 A pictorial summary of the chapter contents. Sources: Brown, Szeliski, and
Winder (2005); Comaniciu and Meer (2002); Snavely, Seitz, and Szeliski (2006); Nagel
and Enkelmann (1986); Szeliski and Shum (1997); Debevec and Malik (1997); Gortler,
Grzeszczuk, Szeliski et al. (1996); Viola and Jones (2004)—see the figures in the respec-
tive chapters for copyright information.

1.3 Book overview 23

next chapter and dip into this material later. In Chapter 2, we break down image formation
into three major components. Geometric image formation (Section 2.1) deals with points,
lines, and planes, and how these are mapped onto images using projective geometry and other
models (including radial lens distortion). Photometric image formation (Section 2.2) covers
radiometry, which describes how light interacts with surfaces in the world, and optics, which
projects light onto the sensor plane. Finally, Section 2.3 covers how sensors work, including
topics such as sampling and aliasing, color sensing, and in-camera compression.

Chapter 3 covers image processing, which is needed in almost all computer vision appli-
cations. This includes topics such as linear and non-linear filtering (Section 3.3), the Fourier
transform (Section 3.4), image pyramids and wavelets (Section 3.5), geometric transforma-
tions such as image warping (Section 3.6), and global optimization techniques such as regu-
larization and Markov Random Fields (MRFs) (Section 3.7). While most of this material is
covered in courses and textbooks on image processing, the use of optimization techniques is
more typically associated with computer vision (although MRFs are now being widely used
in image processing as well). The section on MRFs is also the first introduction to the use
of Bayesian inference techniques, which are covered at a more abstract level in Appendix B.
Chapter 3 also presents applications such as seamless image blending and image restoration.

In Chapter 4, we cover feature detection and matching. A lot of current 3D reconstruction
and recognition techniques are built on extracting and matching feature points (Section 4.1),
so this is a fundamental technique required by many subsequent chapters (Chapters 6, 7, 9
and 14). We also cover edge and straight line detection in Sections 4.2 and 4.3.

Chapter 5 covers region segmentation techniques, including active contour detection and
tracking (Section 5.1). Segmentation techniques include top-down (split) and bottom-up
(merge) techniques, mean shift techniques that find modes of clusters, and various graph-
based segmentation approaches. All of these techniques are essential building blocks that are
widely used in a variety of applications, including performance-driven animation, interactive
image editing, and recognition.

In Chapter 6, we cover geometric alignment and camera calibration. We introduce the
basic techniques of feature-based alignment in Section 6.1 and show how this problem can
be solved using either linear or non-linear least squares, depending on the motion involved.
We also introduce additional concepts, such as uncertainty weighting and robust regression,
which are essential to making real-world systems work. Feature-based alignment is then used
as a building block for 3D pose estimation (extrinsic calibration) in Section 6.2 and camera
(intrinsic) calibration in Section 6.3. Chapter 6 also describes applications of these techniques
to photo alignment for flip-book animations, 3D pose estimation from a hand-held camera,
and single-view reconstruction of building models.

Chapter 7 covers the topic of structure from motion, which involves the simultaneous
recovery of 3D camera motion and 3D scene structure from a collection of tracked 2D fea-

24 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

tures. This chapter begins with the easier problem of 3D point triangulation (Section 7.1),
which is the 3D reconstruction of points from matched features when the camera positions
are known. It then describes two-frame structure from motion (Section 7.2), for which al-
gebraic techniques exist, as well as robust sampling techniques such as RANSAC that can
discount erroneous feature matches. The second half of Chapter 7 describes techniques for
multi-frame structure from motion, including factorization (Section 7.3), bundle adjustment
(Section 7.4), and constrained motion and structure models (Section 7.5). It also presents
applications in view morphing, sparse 3D model construction, and match move.

In Chapter 8, we go back to a topic that deals directly with image intensities (as op-
posed to feature tracks), namely dense intensity-based motion estimation (optical flow). We
start with the simplest possible motion models, translational motion (Section 8.1), and cover
topics such as hierarchical (coarse-to-fine) motion estimation, Fourier-based techniques, and
iterative refinement. We then present parametric motion models, which can be used to com-
pensate for camera rotation and zooming, as well as affine or planar perspective motion (Sec-
tion 8.2). This is then generalized to spline-based motion models (Section 8.3) and finally
to general per-pixel optical flow (Section 8.4), including layered and learned motion models
(Section 8.5). Applications of these techniques include automated morphing, frame interpo-
lation (slow motion), and motion-based user interfaces.

Chapter 9 is devoted to image stitching, i.e., the construction of large panoramas and com-
posites. While stitching is just one example of computation photography (see Chapter 10),
there is enough depth here to warrant a separate chapter. We start by discussing various pos-
sible motion models (Section 9.1), including planar motion and pure camera rotation. We
then discuss global alignment (Section 9.2), which is a special (simplified) case of general
bundle adjustment, and then present panorama recognition, i.e., techniques for automatically
discovering which images actually form overlapping panoramas. Finally, we cover the topics
of image compositing and blending (Section 9.3), which involve both selecting which pixels
from which images to use and blending them together so as to disguise exposure differences.

Image stitching is a wonderful application that ties together most of the material covered
in earlier parts of this book. It also makes for a good mid-term course project that can build
on previously developed techniques such as image warping and feature detection and match-
ing. Chapter 9 also presents more specialized variants of stitching such as whiteboard and
document scanning, video summarization, panography, full 360° spherical panoramas, and
interactive photomontage for blending repeated action shots together.

Chapter 10 presents additional examples of computational photography, which is the pro-
cess of creating new images from one or more input photographs, often based on the careful
modeling and calibration of the image formation process (Section 10.1). Computational pho-
tography techniques include merging multiple exposures to create high dynamic range images
(Section 10.2), increasing image resolution through blur removal and super-resolution (Sec-

1.3 Book overview 25

tion 10.3), and image editing and compositing operations (Section 10.4). We also cover the
topics of texture analysis, synthesis and inpainting (hole filling) in Section 10.5, as well as
non-photorealistic rendering (Section 10.5.2).

In Chapter 11, we turn to the issue of stereo correspondence, which can be thought of
as a special case of motion estimation where the camera positions are already known (Sec-
tion 11.1). This additional knowledge enables stereo algorithms to search over a much smaller
space of correspondences and, in many cases, to produce dense depth estimates that can
be converted into visible surface models (Section 11.3). We also cover multi-view stereo
algorithms that build a true 3D surface representation instead of just a single depth map
(Section 11.6). Applications of stereo matching include head and gaze tracking, as well as
depth-based background replacement (Z-keying).

Chapter 12 covers additional 3D shape and appearance modeling techniques. These in-
clude classic shape-from-X techniques such as shape from shading, shape from texture, and
shape from focus (Section 12.1), as well as shape from smooth occluding contours (Sec-
tion 11.2.1) and silhouettes (Section 12.5). An alternative to all of these passive computer
vision techniques is to use active rangefinding (Section 12.2), i.e., to project patterned light
onto scenes and recover the 3D geometry through triangulation. Processing all of these 3D
representations often involves interpolating or simplifying the geometry (Section 12.3), or
using alternative representations such as surface point sets (Section 12.4).

The collection of techniques for going from one or more images to partial or full 3D
models is often called image-based modeling or 3D photography. Section 12.6 examines
three more specialized application areas (architecture, faces, and human bodies), which can
use model-based reconstruction to fit parameterized models to the sensed data. Section 12.7
examines the topic of appearance modeling, i.e., techniques for estimating the texture maps,
albedos, or even sometimes complete bi-directional reflectance distribution functions (BRDFs)
that describe the appearance of 3D surfaces.

In Chapter 13, we discuss the large number of image-based rendering techniques that
have been developed in the last two decades, including simpler techniques such as view in-
terpolation (Section 13.1), layered depth images (Section 13.2), and sprites and layers (Sec-
tion 13.2.1), as well as the more general framework of light fields and Lumigraphs (Sec-
tion 13.3) and higher-order fields such as environment mattes (Section 13.4). Applications of
these techniques include navigating 3D collections of photographs using photo tourism and
viewing 3D models as object movies.

In Chapter 13, we also discuss video-based rendering, which is the temporal extension of
image-based rendering. The topics we cover include video-based animation (Section 13.5.1),
periodic video turned into video textures (Section 13.5.2), and 3D video constructed from
multiple video streams (Section 13.5.4). Applications of these techniques include video de-
noising, morphing, and tours based on 360° video.

26 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Week Material Project

(1.) Chapter 2 Image formation

Chapter 3 Image processing

Chapter 4 Feature detection and matching P1
Chapter 6 Feature-based alignment

Chapter 9 Image stitching P2
Chapter 8 Dense motion estimation

Chapter 7 Structure from motion PP

e A N i

Chapter 14 Recognition
(9.) Chapter 10 Computational photography
10. Chapter 11 Stereo correspondence
(11.) Chapter 12 3D reconstruction
12. Chapter 13 Image-based rendering
13. Final project presentations FP

Table 1.1 Sample syllabi for 10-week and 13-week courses. The weeks in parentheses are
not used in the shorter version. P1 and P2 are two early-term mini-projects, PP is when the
(student-selected) final project proposals are due, and FP is the final project presentations.

Chapter 14 describes different approaches to recognition. It begins with techniques for
detecting and recognizing faces (Sections 14.1 and 14.2), then looks at techniques for finding
and recognizing particular objects (instance recognition) in Section 14.3. Next, we cover the
most difficult variant of recognition, namely the recognition of broad categories, such as cars,
motorcycles, horses and other animals (Section 14.4), and the role that scene context plays in
recognition (Section 14.5).

To support the book’s use as a textbook, the appendices and associated Web site contain
more detailed mathematical topics and additional material. Appendix A covers linear algebra
and numerical techniques, including matrix algebra, least squares, and iterative techniques.
Appendix B covers Bayesian estimation theory, including maximum likelihood estimation,
robust statistics, Markov random fields, and uncertainty modeling. Appendix C describes the
supplementary material available to complement this book, including images and data sets,
pointers to software, course slides, and an on-line bibliography.

1.4 Sample syllabus

Teaching all of the material covered in this book in a single quarter or semester course is a
Herculean task and likely one not worth attempting. It is better to simply pick and choose

1.5 A note on notation 27

topics related to the lecturer’s preferred emphasis and tailored to the set of mini-projects
envisioned for the students.

Steve Seitz and I have successfully used a 10-week syllabus similar to the one shown in
Table 1.1 (omitting the parenthesized weeks) as both an undergraduate and a graduate-level
course in computer vision. The undergraduate course'? tends to go lighter on the mathematics
and takes more time reviewing basics, while the graduate-level course'! dives more deeply
into techniques and assumes the students already have a decent grounding in either vision
or related mathematical techniques. (See also the Introduction to Computer Vision course at
Stanford,'? which uses a similar curriculum.) Related courses have also been taught on the
topics of 3D photography'? and computational photography. '

When Steve and I teach the course, we prefer to give the students several small program-
ming projects early in the course rather than focusing on written homework or quizzes. With
a suitable choice of topics, it is possible for these projects to build on each other. For exam-
ple, introducing feature matching early on can be used in a second assignment to do image
alignment and stitching. Alternatively, direct (optical flow) techniques can be used to do the
alignment and more focus can be put on either graph cut seam selection or multi-resolution
blending techniques.

We also ask the students to propose a final project (we provide a set of suggested topics
for those who need ideas) by the middle of the course and reserve the last week of the class
for student presentations. With any luck, some of these final projects can actually turn into
conference submissions!

No matter how you decide to structure the course or how you choose to use this book, I
encourage you to try at least a few small programming tasks to get a good feel for how vision
techniques work, and when they do not. Better yet, pick topics that are fun and can be used on
your own photographs, and try to push your creative boundaries to come up with surprising
results.

1.5 A note on notation

For better or worse, the notation found in computer vision and multi-view geometry textbooks
tends to vary all over the map (Faugeras 1993; Hartley and Zisserman 2004; Girod, Greiner,
and Niemann 2000; Faugeras and Luong 2001; Forsyth and Ponce 2003). In this book, I
use the convention I first learned in my high school physics class (and later multi-variate

10 http://www.cs.washington.edu/education/courses/455/

1 http://www.cs.washington.edu/education/courses/576/
2http://vision.stanford.edu/teaching/cs223b/

13 http://www.cs.washington.edu/education/courses/558/06sp/
14 http://graphics.cs.cmu.edu/courses/15-463/

http://www.cs.washington.edu/education/courses/455/
http://www.cs.washington.edu/education/courses/576/
http://vision.stanford.edu/teaching/cs223b/
http://www.cs.washington.edu/education/courses/558/06sp/
http://graphics.cs.cmu.edu/courses/15-463/

28 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

calculus and computer graphics courses), which is that vectors v are lower case bold, matrices
M are upper case bold, and scalars (T, s) are mixed case italic. Unless otherwise noted,
vectors operate as column vectors, i.e., they post-multiply matrices, M v, although they are
sometimes written as comma-separated parenthesized lists * = (x,y) instead of bracketed
column vectors = [z y]7. Some commonly used matrices are R for rotations, K for
calibration matrices, and I for the identity matrix. Homogeneous coordinates (Section 2.1)
are denoted with a tilde over the vector, e.g., & = (Z,§,w) = w(x,y,1) = W& in P?. The
cross product operator in matrix form is denoted by [].,.

1.6 Additional reading

This book attempts to be self-contained, so that students can implement the basic assignments
and algorithms described here without the need for outside references. However, it does pre-
suppose a general familiarity with basic concepts in linear algebra and numerical techniques,
which are reviewed in Appendix A, and image processing, which is reviewed in Chapter 3.

Students who want to delve more deeply into these topics can look in (Golub and Van
Loan 1996) for matrix algebra and (Strang 1988) for linear algebra. In image processing,
there are a number of popular textbooks, including (Crane 1997; Gomes and Velho 1997;
Jidhne 1997; Pratt 2007; Russ 2007; Burger and Burge 2008; Gonzales and Woods 2008). For
computer graphics, popular texts include (Foley, van Dam, Feiner et al. 1995; Watt 1995),
with (Glassner 1995) providing a more in-depth look at image formation and rendering. For
statistics and machine learning, Chris Bishop’s (2006) book is a wonderful and comprehen-
sive introduction with a wealth of exercises. Students may also want to look in other textbooks
on computer vision for material that we do not cover here, as well as for additional project
ideas (Ballard and Brown 1982; Faugeras 1993; Nalwa 1993; Trucco and Verri 1998; Forsyth
and Ponce 2003).

There is, however, no substitute for reading the latest research literature, both for the lat-
est ideas and techniques and for the most up-to-date references to related literature.'> In this
book, I have attempted to cite the most recent work in each field so that students can read them
directly and use them as inspiration for their own work. Browsing the last few years’ con-
ference proceedings from the major vision and graphics conferences, such as CVPR, ECCYV,
ICCYV, and SIGGRAPH, will provide a wealth of new ideas. The tutorials offered at these
conferences, for which slides or notes are often available on-line, are also an invaluable re-
source.

15 For a comprehensive bibliography and taxonomy of computer vision research, Keith Price’s Annotated Com-
puter Vision Bibliography http://www.visionbib.com/bibliography/contents.html is an invaluable resource.

http://www.visionbib.com/bibliography/contents.html

2.1

22

23

24
2.5

Chapter 2

Image formation

Geometric primitives and transformations 31
2.1.1 Geometric primitives oo 32
2.1.2 2D transformationso 35
2.1.3 3D transformations Lo 39
2.14 3Drotations 41
2.1.5 3Dto2D projectionso e e i e e e 46
2.1.6 Lensdistortions 58
Photometric image formation oL 60
221 Lighting. o 60
2.2.2 Reflectance and shading 62
223 OPLCS . . v vt 68
The digital camera 73
2.3.1 Samplingand aliasing 77
232 Color e 80
233 Compression 90
Additional reading L. 93
EXercises 93

30 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

‘<—zi:102mm ~l Z,=5m ~l

(©) (d)

Figure 2.1 A few components of the image formation process: (a) perspective projection;
(b) light scattering when hitting a surface; (c) lens optics; (d) Bayer color filter array.

2.1 Geometric primitives and transformations 31

Before we can intelligently analyze and manipulate images, we need to establish a vocabulary
for describing the geometry of a scene. We also need to understand the image formation
process that produced a particular image given a set of lighting conditions, scene geometry,
surface properties, and camera optics. In this chapter, we present a simplified model of such
an image formation process.

Section 2.1 introduces the basic geometric primitives used throughout the book (points,
lines, and planes) and the geometric transformations that project these 3D quantities into 2D
image features (Figure 2.1a). Section 2.2 describes how lighting, surface properties (Fig-
ure 2.1b), and camera optics (Figure 2.1c) interact in order to produce the color values that
fall onto the image sensor. Section 2.3 describes how continuous color images are turned into
discrete digital samples inside the image sensor (Figure 2.1d) and how to avoid (or at least
characterize) sampling deficiencies, such as aliasing.

The material covered in this chapter is but a brief summary of a very rich and deep set of
topics, traditionally covered in a number of separate fields. A more thorough introduction to
the geometry of points, lines, planes, and projections can be found in textbooks on multi-view
geometry (Hartley and Zisserman 2004; Faugeras and Luong 2001) and computer graphics
(Foley, van Dam, Feiner et al. 1995). The image formation (synthesis) process is traditionally
taught as part of a computer graphics curriculum (Foley, van Dam, Feiner et al. 1995; Glass-
ner 1995; Watt 1995; Shirley 2005) but it is also studied in physics-based computer vision
(Wolff, Shafer, and Healey 1992a). The behavior of camera lens systems is studied in optics
(Moller 1988; Hecht 2001; Ray 2002). Two good books on color theory are (Wyszecki and
Stiles 2000; Healey and Shafer 1992), with (Livingstone 2008) providing a more fun and in-
formal introduction to the topic of color perception. Topics relating to sampling and aliasing
are covered in textbooks on signal and image processing (Crane 1997; Jihne 1997; Oppen-
heim and Schafer 1996; Oppenheim, Schafer, and Buck 1999; Pratt 2007; Russ 2007; Burger
and Burge 2008; Gonzales and Woods 2008).

A note to students: If you have already studied computer graphics, you may want to
skim the material in Section 2.1, although the sections on projective depth and object-centered
projection near the end of Section 2.1.5 may be new to you. Similarly, physics students (as
well as computer graphics students) will mostly be familiar with Section 2.2. Finally, students
with a good background in image processing will already be familiar with sampling issues
(Section 2.3) as well as some of the material in Chapter 3.

2.1 Geometric primitives and transformations

In this section, we introduce the basic 2D and 3D primitives used in this textbook, namely
points, lines, and planes. We also describe how 3D features are projected into 2D features.

32 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

More detailed descriptions of these topics (along with a gentler and more intuitive introduc-
tion) can be found in textbooks on multiple-view geometry (Hartley and Zisserman 2004;
Faugeras and Luong 2001).

2.1.1 Geometric primitives

Geometric primitives form the basic building blocks used to describe three-dimensional shapes.
In this section, we introduce points, lines, and planes. Later sections of the book discuss
curves (Sections 5.1 and 11.2), surfaces (Section 12.3), and volumes (Section 12.5).

2D points. 2D points (pixel coordinates in an image) can be denoted using a pair of values,

m:[ﬂ Q2.1
y

(As stated in the introduction, we use the (x1, x2, . . .) notation to denote column vectors.)

x = (x,y) € R?, or alternatively,

2D points can also be represented using homogeneous coordinates, & = (i, 7, w) € P?,
where vectors that differ only by scale are considered to be equivalent. P? = R — (0,0, 0)
is called the 2D projective space.

A homogeneous vector & can be converted back into an inhomogeneous vector x by
dividing through by the last element w, i.e.,

where T = (x,y, 1) is the augmented vector. Homogeneous points whose last element is w =
0 are called ideal points or points at infinity and do not have an equivalent inhomogeneous
representation.

2D lines. 2D lines can also be represented using homogeneous coordinates [= (a,b,c).
The corresponding line equation is

Z-l=ax+by+c=0. (2.3)

We can normalize the line equation vector so that I = (7i;, 7y, d) = (72, d) with |2 = 1. In
this case, 72 is the normal vector perpendicular to the line and d is its distance to the origin
(Figure 2.2). (The one exception to this normalization is the line at infinity [= (0,0,1),
which includes all (ideal) points at infinity.)

We can also express 7t as a function of rotation angle 6, 7 = (715,7,) = (cosf,sin6)
(Figure 2.2a). This representation is commonly used in the Hough transform line-finding

2.1 Geometric primitives and transformations 33

>5>

yA

(a) b)

Figure 2.2 (a) 2D line equation and (b) 3D plane equation, expressed in terms of the normal
7 and distance to the origin d.

algorithm, which is discussed in Section 4.3.2. The combination (6, d) is also known as
polar coordinates.
When using homogeneous coordinates, we can compute the intersection of two lines as

=1 x 1, (2.4)
where X is the cross product operator. Similarly, the line joining two points can be written as
I =3 x &s. (2.5)

When trying to fit an intersection point to multiple lines or, conversely, a line to multiple
points, least squares techniques (Section 6.1.1 and Appendix A.2) can be used, as discussed
in Exercise 2.1.

2D conics. There are other algebraic curves that can be expressed with simple polynomial
homogeneous equations. For example, the conic sections (so called because they arise as the
intersection of a plane and a 3D cone) can be written using a quadric equation

#'Qz =0. (2.6)

Quadric equations play useful roles in the study of multi-view geometry and camera calibra-
tion (Hartley and Zisserman 2004; Faugeras and Luong 2001) but are not used extensively in
this book.

3D points. Point coordinates in three dimensions can be written using inhomogeneous co-
ordinates ¢ = (z,y, z) € R? or homogeneous coordinates & = (&, 7, Z,w) € P3. As before,
it is sometimes useful to denote a 3D point using the augmented vector T = (z,y, z, 1) with

r = wx.

34 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.3 3D line equation, r = (1 — \)p + Aq.

3D planes. 3D planes can also be represented as homogeneous coordinates m = (a, b, ¢, d)
with a corresponding plane equation

r-m=ar+by+cz+d=0. 2.7

We can also normalize the plane equation as m = (7, Ny, 5, d) = (72, d) with ||72|| = 1.
In this case, 1 is the normal vector perpendicular to the plane and d is its distance to the
origin (Figure 2.2b). As with the case of 2D lines, the plane at infinity mm = (0,0,0,1),
which contains all the points at infinity, cannot be normalized (i.e., it does not have a unique
normal or a finite distance).

We can express 7i as a function of two angles (6, ¢),

7t = (cos 6 cos ¢, sin 6 cos ¢, sin ¢), (2.8)

i.e., using spherical coordinates, but these are less commonly used than polar coordinates
since they do not uniformly sample the space of possible normal vectors.

3D lines. Lines in 3D are less elegant than either lines in 2D or planes in 3D. One possible
representation is to use two points on the line, (p, q). Any other point on the line can be
expressed as a linear combination of these two points

r=(1—-X\p+ Ag, (2.9)

as shown in Figure 2.3. If we restrict 0 < A < 1, we get the line segment joining p and q.
If we use homogeneous coordinates, we can write the line as

F = pup+ A\g. (2.10)

A special case of this is when the second point is at infinity, i.e., § = (dg, ciy, d.,0) = (d,0).
Here, we see that d is the direction of the line. We can then re-write the inhomogeneous 3D
line equation as

r=p+Ad. .11

2.1 Geometric primitives and transformations 35

A disadvantage of the endpoint representation for 3D lines is that it has too many degrees
of freedom, i.e., six (three for each endpoint) instead of the four degrees that a 3D line truly
has. However, if we fix the two points on the line to lie in specific planes, we obtain a rep-
resentation with four degrees of freedom. For example, if we are representing nearly vertical
lines, then z = 0 and z = 1 form two suitable planes, i.e., the (z,y) coordinates in both
planes provide the four coordinates describing the line. This kind of two-plane parameteri-
zation is used in the light field and Lumigraph image-based rendering systems described in
Chapter 13 to represent the collection of rays seen by a camera as it moves in front of an
object. The two-endpoint representation is also useful for representing line segments, even
when their exact endpoints cannot be seen (only guessed at).

If we wish to represent all possible lines without bias towards any particular orientation,
we can use Pliicker coordinates (Hartley and Zisserman 2004, Chapter 2; Faugeras and Luong
2001, Chapter 3). These coordinates are the six independent non-zero entries in the 4 x 4 skew
symmetric matrix

L=pq —gp", 2.12)

where p and g are any two (non-identical) points on the line. This representation has only
four degrees of freedom, since L is homogeneous and also satisfies det(L) = 0, which results
in a quadratic constraint on the Pliicker coordinates.

In practice, the minimal representation is not essential for most applications. An ade-
quate model of 3D lines can be obtained by estimating their direction (which may be known
ahead of time, e.g., for architecture) and some point within the visible portion of the line
(see Section 7.5.1) or by using the two endpoints, since lines are most often visible as finite
line segments. However, if you are interested in more details about the topic of minimal
line parameterizations, Forstner (2005) discusses various ways to infer and model 3D lines in
projective geometry, as well as how to estimate the uncertainty in such fitted models.

3D quadrics. The 3D analog of a conic section is a quadric surface
T~
' Qx =0 (2.13)

(Hartley and Zisserman 2004, Chapter 2). Again, while quadric surfaces are useful in the
study of multi-view geometry and can also serve as useful modeling primitives (spheres,
ellipsoids, cylinders), we do not study them in great detail in this book.

2.1.2 2D transformations

Having defined our basic primitives, we can now turn our attention to how they can be trans-
formed. The simplest transformations occur in the 2D plane and are illustrated in Figure 2.4.

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y“ similarityQ projective
translation
_r

-
Euclidean Ae L

X
Figure 2.4 Basic set of 2D planar transformations.
Translation. 2D translations can be written as ' = x + t or
m':[I t}a‘: (2.14)
where I is the (2 x 2) identity matrix or
_ I t|_
T = [of 1]w (2.15)

where O is the zero vector. Using a 2 X 3 matrix results in a more compact notation, whereas
using a full-rank 3 x 3 matrix (which can be obtained from the 2 x 3 matrix by appending a
[07' 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as & appears on both sides, it can always be
replaced with a full homogeneous vector &.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
' =Rx+tor

m’:[R t}:ﬁ (2.16)
where
R_ [C'OSH —sinf] 2.17)
sinf cos6

is an orthonormal rotation matrix with RR” = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as ' = sRx + t where s is an arbitrary scale factor. It can also be written as

, _ a —b tp | _
- = 2.1
x [sR t }x [boa i,] z, (2.18)

where we no longer require that a? + > = 1. The similarity transform preserves angles
between lines.

2.1 Geometric primitives and transformations 37

Affine. The affine transformation is written as @’ = A&, where A is an arbitrary 2 x 3
matrix, i.e.,

x = [doo - for 402 1@ (2.19)
Parallel lines remain parallel under affine transformations.

Projective. This transformation, also known as a perspective transform or homography,
operates on homogeneous coordinates,

¥ = Hz, (2.20)

where H is an arbitrary 3 x 3 matrix. Note that H is homogeneous, i.e., it is only defined
up to a scale, and that two H matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate &' must be normalized in order to obtain an inhomogeneous result

x,ie.,
; hoox + ho1y + ho2 hioz + hi1y + hio

 hoox + ho1y + hoo " hoox + hory + hao
Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

and 7/

2.21)

Hierarchy of 2D transformations. The preceding set of transformations are illustrated
in Figure 2.4 and summarized in Table 2.1. The easiest way to think of them is as a set
of (potentially restricted) 3 x 3 matrices operating on 2D homogeneous coordinate vectors.
Hartley and Zisserman (2004) contains a more detailed description of the hierarchy of 2D
planar transformations.

The above transformations form a nested set of groups, i.e., they are closed under com-
position and have an inverse that is a member of the same group. (This will be important
later when applying these transformations to images in Section 3.6.) Each (simpler) group is
a subset of the more complex group below it.

Co-vectors. While the above transformations can be used to transform points in a 2D plane,
can they also be used directly to transform a line equation? Consider the homogeneous equa-
tionl - £ = 0. If we transform &’ = Hx, we obtain

T ~ ~

%=1 Hi=H\ "8=1-2=0, (2.22)
~—T~

ie., il = H . Thus, the action of a projective transformation on a co-vector such as a 2D

line or 3D normal can be represented by the transposed inverse of the matrix, which is equiv-
alent to the adjoint of H, since projective transformation matrices are homogeneous. Jim

38 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix #DoF Preserves Icon
translation [I ‘ t } 2 orientation D
2x3
rigid (Buclidean) [R|t } 3 lengths Q
2x3
similarity [sR ‘ t } 4 angles Q
2x3
affine [A } 6 parallelism D
2x3
projective { H } 8 straight lines lj
3x3

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2 x 3 matrices are extended with a third [OT 1] row to form
a full 3 x 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-vectors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This transformation changes the aspect ratio of an image,

¥ = spx+ty

yoo= syt
and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

¥ = a9+ aix+ agy + agz? + arxy

Y = as+asx+ asy+ azz’ + agry,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, aj, which are often the quantities being estimated.

2.1 Geometric primitives and transformations 39

Transformation Matrix #DoF Preserves Icon
translation [I ‘ t } 3 orientation D
3x4
rigid (Buclidean) [R|t } 6 lengths Q
3x4
similarity [sR ‘ t } 7 angles Q
3x4
affine [A } 12 parallelism D
3x4
projective { H } 15 straight lines lj
4x4

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 3 x 4 matrices are extended with a fourth [0 1] row to
form a full 4 x 4 matrix for homogeneous coordinate transformations. The mnemonic icons
are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Bilinear interpolant. This eight-parameter transform (Wolberg 1990),

¥ = a4 a1z + axy + agry

/

Yy = a3+ asr + asy + arxy,

can be used to interpolate the deformation due to the motion of the four corner points of
a square. (In fact, it can interpolate the motion of any four non-collinear points.) While
the deformation is linear in the motion parameters, it does not generally preserve straight
lines (only lines parallel to the square axes). However, it is often quite useful, e.g., in the
interpolation of sparse grids using splines (Section 8.3).

2.1.3 3D transformations

The set of three-dimensional coordinate transformations is very similar to that available for
2D transformations and is summarized in Table 2.2. As in 2D, these transformations form a
nested set of groups. Hartley and Zisserman (2004, Section 2.4) give a more detailed descrip-
tion of this hierarchy.

Translation. 3D translations can be written as ' = « + t or

w’:[I t}a‘c (2.23)

40 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

where I is the (3 x 3) identity matrix and O is the zero vector.

Rotation + translation. Also known as 3D rigid body motion or the 3D Euclidean trans-
formation, it can be written as ' = Rx + & or

@ = [R t }:ﬁ (2.24)

where R is a 3 x 3 orthonormal rotation matrix with RR” = I and |R| = 1. Note that
sometimes it is more convenient to describe a rigid motion using

' = R(x — ¢) = Rz — Re, (2.25)

where c is the center of rotation (often the camera center).
Compactly parameterizing a 3D rotation is a non-trivial task, which we describe in more
detail below.

Scaled rotation. The 3D similarity transform can be expressed as ' = sRx + t where s
is an arbitrary scale factor. It can also be written as

z = { SRt }:z (2.26)

This transformation preserves angles between lines and planes.

Affine. The affine transform is written as ' = AZ, where A is an arbitrary 3 X 4 matrix,
ie.,
apo o1 @o2 Qo3
.’13/ = ajp ai1 a1z ai3 x. (227)

a0 ag1 G222 A23

Parallel lines and planes remain parallel under affine transformations.

Projective. This transformation, variously known as a 3D perspective transform, homogra-
phy, or collineation, operates on homogeneous coordinates,

¥ = Hz, (2.28)

where H is an arbitrary 4 x 4 homogeneous matrix. As in 2D, the resulting homogeneous
coordinate ' must be normalized in order to obtain an inhomogeneous result . Perspective
transformations preserve straight lines (i.e., they remain straight after the transformation).

2.1 Geometric primitives and transformations 41

Figure 2.5 Rotation around an axis 72 by an angle 6.

2.1.4 3D rotations

The biggest difference between 2D and 3D coordinate transformations is that the parameter-
ization of the 3D rotation matrix R is not as straightforward but several possibilities exist.

Euler angles

A rotation matrix can be formed as the product of three rotations around three cardinal axes,
e.g., x, y, and z, or x, y, and z. This is generally a bad idea, as the result depends on the
order in which the transforms are applied. What is worse, it is not always possible to move
smoothly in the parameter space, i.e., sometimes one or more of the Euler angles change

' For these reasons, we do not even

dramatically in response to a small change in rotation.
give the formula for Euler angles in this book—interested readers can look in other textbooks
or technical reports (Faugeras 1993; Diebel 2006). Note that, in some applications, if the
rotations are known to be a set of uni-axial transforms, they can always be represented using

an explicit set of rigid transformations.

Axis/angle (exponential twist)

A rotation can be represented by a rotation axis 72 and an angle 6, or equivalently by a 3D
vector w = 6n. Figure 2.5 shows how we can compute the equivalent rotation. First, we
project the vector v onto the axis 7 to obtain

v =n(h-v) = (A"), (2.29)

which is the component of v that is not affected by the rotation. Next, we compute the
perpendicular residual of v from 7,

v =v—v =T -nr")v. (2.30)

! In robotics, this is sometimes referred to as gimbal lock.

42 Computer Vision: Algorithms and Applications (September 3, 2010 draft)
We can rotate this vector by 90° using the cross product,
vy =17 X v = [A]xv, (2.31)

where [71] « is the matrix form of the cross product operator with the vector 7 = (fig, 7oy, 725),

0 —h. iy
A= A, 0 —ng |. (2.32)
—f, hy 0

Note that rotating this vector by another 90° is equivalent to taking the cross product again,
— B — (]2 4 —
Vyx =N XV = [A]3v=—v],

and hence

v =v—v, =v+vgy = I +[A]%)v.

We can now compute the in-plane component of the rotated vector w as
w; = cosfv, +sinfvy = (sinf[A]x — cos[i]%)v.
Putting all these terms together, we obtain the final rotated vector as
u=wu, +v =TI +sinb[Aly + (1 - cosd)[A]%)v. (2.33)

We can therefore write the rotation matrix corresponding to a rotation by € around an axis 71
as
R(7,0) = I +sin 0[] + (1 — cos0)[n]2, (2.34)

which is known as Rodriguez’s formula (Ayache 1989).

The product of the axis 7 and angle 0, w = 07 = (wy,wy,w.), is a minimal represen-
tation for a 3D rotation. Rotations through common angles such as multiples of 90° can be
represented exactly (and converted to exact matrices) if 6 is stored in degrees. Unfortunately,
this representation is not unique, since we can always add a multiple of 360° (27 radians) to
6 and get the same rotation matrix. As well, (72, 0) and (—7, —0) represent the same rotation.

However, for small rotations (e.g., corrections to rotations), this is an excellent choice.
In particular, for small (infinitesimal or instantaneous) rotations and 6 expressed in radians,
Rodriguez’s formula simplifies to

Rw)~I+sinfn|y ~I+[00]x = | w. 1 —wg |, (2.35)

2.1 Geometric primitives and transformations 43

which gives a nice linearized relationship between the rotation parameters w and R. We can
also write R(w)v &~ v + w x v, which is handy when we want to compute the derivative of
Ruv with respect to w,

0 z -y

ORv

ST =] -2 0 =z |. (2.36)
y —x 0

Another way to derive a rotation through a finite angle is called the exponential twist
(Murray, Li, and Sastry 1994). A rotation by an angle 6 is equivalent to k rotations through
0/k. In the limit as k — oo, we obtain

1
R(7,0) = Jim (I + E[Gﬁ]x)k = exp [W]x. (2.37)
If we expand the matrix exponential as a Taylor series (using the identity [2)%2 = —[fA]",

k > 0, and again assuming @ is in radians),

o 02 o 07 s
explwl = T+0[Alx + [l + AL+
03 . 0> 63 .
= T+ -5+)R+ (5 -5+)R
= I +sinf[n)x + (1 — cos0)[n]2, (2.38)

which yields the familiar Rodriguez’s formula.

Unit quaternions

The unit quaternion representation is closely related to the angle/axis representation. A unit
quaternion is a unit length 4-vector whose components can be written as ¢ = (¢x, ¢y, ¢z, Gw)
or g = (z,y, z, w) for short. Unit quaternions live on the unit sphere ||g|| = 1 and antipodal
(opposite sign) quaternions, q and —gq, represent the same rotation (Figure 2.6). Other than
this ambiguity (dual covering), the unit quaternion representation of a rotation is unique.
Furthermore, the representation is continuous, i.e., as rotation matrices vary continuously,
one can find a continuous quaternion representation, although the path on the quaternion
sphere may wrap all the way around before returning to the “origin” ¢, = (0,0,0,1). For
these and other reasons given below, quaternions are a very popular representation for pose
and for pose interpolation in computer graphics (Shoemake 1985).
Quaternions can be derived from the axis/angle representation through the formula
0

q = (v,w) = (sin gﬁ,cos 5), (2.39)

44 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.6 Unit quaternions live on the unit sphere ||g|| = 1. This figure shows a smooth
trajectory through the three quaternions q,, q;, and q,. The antipodal point to q,, namely
—q,, represents the same rotation as gq,.

where 7o and 6 are the rotation axis and angle. Using the trigonometric identities sinf =
2sin g cos g and (1 — cos) = 2sin? g, Rodriguez’s formula can be converted to

R(7,0) = I+sinf[a]. + (1 — cos)[n]?
= I+ 2w« +2[]%. (2.40)

This suggests a quick way to rotate a vector v by a quaternion using a series of cross products,
scalings, and additions. To obtain a formula for R(q) as a function of (z, y, z, w), recall that

-z oy —y? — 22 Ty Tz
Wy=| 2z 0 —z | and [v]% = Ty —x? — 2?2 Yz
-y x 0 Tz Yz —x? —y?

We thus obtain
1-2(y2+2%) 2(zy — 2w) 2(zz + yw)
R(q) = 2@y +2w) 1-2(x%+2?) 2(yz —zw) . (2.41)
2(zz — yw) 2(yz +zw) 1 —2(z? +y?)

The diagonal terms can be made more symmetrical by replacing 1 — 2(y? + 22) with (22 +
w? —y? — 2?), etc.

The nicest aspect of unit quaternions is that there is a simple algebra for composing rota-
tions expressed as unit quaternions. Given two quaternions g, = (v, wp) and g; = (v1,w1),

the quaternion multiply operator is defined as

gy = qpq; = (Vo X V1 + WeU1 + W1Vg, WeW1 — Vg - V1), (2.42)

2.1 Geometric primitives and transformations 45

with the property that R(q,) = R(q,)R(q;). Note that quaternion multiplication is not
commutative, just as 3D rotations and matrix multiplications are not.

Taking the inverse of a quaternion is easy: Just flip the sign of v or w (but not both!).
(You can verify this has the desired effect of transposing the R matrix in (2.41).) Thus, we
can also define quaternion division as

4> = qo/q1 = 90q; " = (Vo X V1 + Wv1 — WiVg, —Wow; — Vg - V7). (2.43)

This is useful when the incremental rotation between two rotations is desired.

In particular, if we want to determine a rotation that is partway between two given rota-
tions, we can compute the incremental rotation, take a fraction of the angle, and compute the
new rotation. This procedure is called spherical linear interpolation or slerp for short (Shoe-
make 1985) and is given in Algorithm 2.1. Note that Shoemake presents two formulas other
than the one given here. The first exponentiates g,. by alpha before multiplying the original
quaternion,

q> = 9,4y, (2.44)

while the second treats the quaternions as 4-vectors on a sphere and uses

sin(1 —)6 sin o
qo

q, = q;, (2.45)

sin 6 sin 6

where 6 = cos™!(q, - q;) and the dot product is directly between the quaternion 4-vectors.
All of these formulas give comparable results, although care should be taken when g and g,
are close together, which is why I prefer to use an arctangent to establish the rotation angle.

Which rotation representation is better?

The choice of representation for 3D rotations depends partly on the application.

The axis/angle representation is minimal, and hence does not require any additional con-
straints on the parameters (no need to re-normalize after each update). If the angle is ex-
pressed in degrees, it is easier to understand the pose (say, 90° twist around z-axis), and also
easier to express exact rotations. When the angle is in radians, the derivatives of R with
respect to w can easily be computed (2.36).

Quaternions, on the other hand, are better if you want to keep track of a smoothly moving
camera, since there are no discontinuities in the representation. It is also easier to interpolate
between rotations and to chain rigid transformations (Murray, Li, and Sastry 1994; Bregler
and Malik 1998).

My usual preference is to use quaternions, but to update their estimates using an incre-
mental rotation, as described in Section 6.2.2.

46 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

procedure slerp(qq, q;,):
L. g, =q,/q0 = (vr, w;)
2. if w, < O then g, «— —q,
3. 0, = 2tan” ' (||v,[| /w;)
4. A, = N(v,) = v,./||v.]]
5.0, =0ab,
6. g, = (sin %, cos &)

7. return g, = q,q,

Algorithm 2.1 Spherical linear interpolation (slerp). The axis and total angle are first com-
puted from the quaternion ratio. (This computation can be lifted outside an inner loop that
generates a set of interpolated position for animation.) An incremental quaternion is then
computed and multiplied by the starting rotation quaternion.

2.1.5 3D to 2D projections

Now that we know how to represent 2D and 3D geometric primitives and how to transform
them spatially, we need to specify how 3D primitives are projected onto the image plane. We
can do this using a linear 3D to 2D projection matrix. The simplest model is orthography,
which requires no division to get the final (inhomogeneous) result. The more commonly used
model is perspective, since this more accurately models the behavior of real cameras.

Orthography and para-perspective

An orthographic projection simply drops the z component of the three-dimensional coordi-
nate p to obtain the 2D point . (In this section, we use p to denote 3D points and to denote
2D points.) This can be written as

If we are using homogeneous (projective) coordinates, we can write

(2.47)

8
|
o O =
S = O
o O O
_ o O
T

2.1 Geometric primitives and transformations 47

(a) 3D view (b) orthography

(c) scaled orthography

(e) perspective (f) object-centered

Figure 2.7 Commonly used projection models: (a) 3D view of world, (b) orthography, (c)
scaled orthography, (d) para-perspective, (e) perspective, (f) object-centered. Each diagram
shows a top-down view of the projection. Note how parallel lines on the ground plane and
box sides remain parallel in the non-perspective projections.

48 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

i.e., we drop the z component but keep the w component. Orthography is an approximate
model for long focal length (telephoto) lenses and objects whose depth is shallow relative
to their distance to the camera (Sawhney and Hanson 1991). It is exact only for telecentric
lenses (Baker and Nayar 1999, 2001).

In practice, world coordinates (which may measure dimensions in meters) need to be
scaled to fit onto an image sensor (physically measured in millimeters, but ultimately mea-
sured in pixels). For this reason, scaled orthography is actually more commonly used,

x = [sI242|0] p. (2.48)

This model is equivalent to first projecting the world points onto a local fronto-parallel image
plane and then scaling this image using regular perspective projection. The scaling can be the
same for all parts of the scene (Figure 2.7b) or it can be different for objects that are being
modeled independently (Figure 2.7¢). More importantly, the scaling can vary from frame to
frame when estimating structure from motion, which can better model the scale change that
occurs as an object approaches the camera.

Scaled orthography is a popular model for reconstructing the 3D shape of objects far away
from the camera, since it greatly simplifies certain computations. For example, pose (camera
orientation) can be estimated using simple least squares (Section 6.2.1). Under orthography,
structure and motion can simultaneously be estimated using factorization (singular value de-
composition), as discussed in Section 7.3 (Tomasi and Kanade 1992).

A closely related projection model is para-perspective (Aloimonos 1990; Poelman and
Kanade 1997). In this model, object points are again first projected onto a local reference
parallel to the image plane. However, rather than being projected orthogonally to this plane,
they are projected parallel to the line of sight to the object center (Figure 2.7d). This is
followed by the usual projection onto the final image plane, which again amounts to a scaling.
The combination of these two projections is therefore affine and can be written as

apo ap1 @o2 Qo3
T = a0 a1 a2 a3 | P (2.49)
0 0 0 1

Note how parallel lines in 3D remain parallel after projection in Figure 2.7b—d. Para-perspective
provides a more accurate projection model than scaled orthography, without incurring the
added complexity of per-pixel perspective division, which invalidates traditional factoriza-
tion methods (Poelman and Kanade 1997).

Perspective

The most commonly used projection in computer graphics and computer vision is true 3D
perspective (Figure 2.7e). Here, points are projected onto the image plane by dividing them

2.1 Geometric primitives and transformations 49

by their z component. Using inhomogeneous coordinates, this can be written as
x/z
z=P.p)=1| y/z |. (2.50)
1

In homogeneous coordinates, the projection has a simple linear form,

(2.51)

o~ o
™

0
0
1

o O O

1
z=|0
0

i.e., we drop the w component of p. Thus, after projection, it is not possible to recover the
distance of the 3D point from the image, which makes sense for a 2D imaging sensor.

A form often seen in computer graphics systems is a two-step projection that first projects
3D coordinates into normalized device coordinates in the range (z,y,z) € [—1,—1] x
[—1,1] x [0, 1], and then rescales these coordinates to integer pixel coordinates using a view-
port transformation (Watt 1995; OpenGL-ARB 1997). The (initial) perspective projection
is then represented using a 4 x 4 matrix

1 0 0 0

- 0 1 0 0 -

T = D, (2.52)
00 _Zfar/zrange Znearzfar/zrange
0 0 1 0

where Zpear and zg,, are the near and far z clipping planes and zrange = Zfar — Znear. NOte
that the first two rows are actually scaled by the focal length and the aspect ratio so that
visible rays are mapped to (x,y, z) € [—1, —1]2. The reason for keeping the third row, rather
than dropping it, is that visibility operations, such as z-buffering, require a depth for every
graphical element that is being rendered.

If we set zpear = 1, 2gar — 00, and switch the sign of the third row, the third element
of the normalized screen vector becomes the inverse depth, i.e., the disparity (Okutomi and
Kanade 1993). This can be quite convenient in many cases since, for cameras moving around
outdoors, the inverse depth to the camera is often a more well-conditioned parameterization
than direct 3D distance.

While a regular 2D image sensor has no way of measuring distance to a surface point,
range sensors (Section 12.2) and stereo matching algorithms (Chapter 11) can compute such
values. It is then convenient to be able to map from a sensor-based depth or disparity value d
directly back to a 3D location using the inverse of a 4 x 4 matrix (Section 2.1.5). We can do
this if we represent perspective projection using a full-rank 4 x 4 matrix, as in (2.64).

50 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Ye

Pe
= —° -
OC ZC

Figure 2.8 Projection of a 3D camera-centered point p,. onto the sensor planes at location
p. O, is the camera center (nodal point), ¢ is the 3D origin of the sensor plane coordinate
system, and s, and s, are the pixel spacings.

Camera intrinsics

Once we have projected a 3D point through an ideal pinhole using a projection matrix, we
must still transform the resulting coordinates according to the pixel sensor spacing and the
relative position of the sensor plane to the origin. Figure 2.8 shows an illustration of the
geometry involved. In this section, we first present a mapping from 2D pixel coordinates to
3D rays using a sensor homography M ;, since this is easier to explain in terms of physically
measurable quantities. We then relate these quantities to the more commonly used camera in-
trinsic matrix K, which is used to map 3D camera-centered points p, to 2D pixel coordinates
Zs.

Image sensors return pixel values indexed by integer pixel coordinates (xs,ys), often
with the coordinates starting at the upper-left corner of the image and moving down and to
the right. (This convention is not obeyed by all imaging libraries, but the adjustment for
other coordinate systems is straightforward.) To map pixel centers to 3D coordinates, we first
scale the (z,ys) values by the pixel spacings (s, s,) (sometimes expressed in microns for
solid-state sensors) and then describe the orientation of the sensor array relative to the camera
projection center O, with an origin ¢, and a 3D rotation R, (Figure 2.8).

The combined 2D to 3D projection can then be written as

s, 0 O
0 s, 0] "
— [R, } v .| =M.z, 2.53
p [¢ 0 0 0 yl m (2.53)
0 0 1

The first two columns of the 3 x 3 matrix M , are the 3D vectors corresponding to unit steps
in the image pixel array along the x, and y, directions, while the third column is the 3D
image array origin c;.

2.1 Geometric primitives and transformations 51

The matrix M, is parameterized by eight unknowns: the three parameters describing
the rotation R, the three parameters describing the translation ¢, and the two scale factors
(sz, Sy). Note that we ignore here the possibility of skew between the two axes on the image
plane, since solid-state manufacturing techniques render this negligible. In practice, unless
we have accurate external knowledge of the sensor spacing or sensor orientation, there are
only seven degrees of freedom, since the distance of the sensor from the origin cannot be
teased apart from the sensor spacing, based on external image measurement alone.

However, estimating a camera model M, with the required seven degrees of freedom
(i.e., where the first two columns are orthogonal after an appropriate re-scaling) is impractical,
s0 most practitioners assume a general 3 x 3 homogeneous matrix form.

The relationship between the 3D pixel center p and the 3D camera-centered point p, is
given by an unknown scaling s, p = sp.. We can therefore write the complete projection
between p, and a homogeneous version of the pixel address &5 as

Z,=aM_;'p,= Kp,. (2.54)

The 3 x 3 matrix K is called the calibration matrix and describes the camera intrinsics (as
opposed to the camera’s orientation in space, which are called the extrinsics).

From the above discussion, we see that K has seven degrees of freedom in theory and
eight degrees of freedom (the full dimensionality of a 3 x 3 homogeneous matrix) in practice.
Why, then, do most textbooks on 3D computer vision and multi-view geometry (Faugeras
1993; Hartley and Zisserman 2004; Faugeras and Luong 2001) treat K as an upper-triangular
matrix with five degrees of freedom?

While this is usually not made explicit in these books, it is because we cannot recover
the full K matrix based on external measurement alone. When calibrating a camera (Chap-
ter 6) based on external 3D points or other measurements (Tsai 1987), we end up estimating
the intrinsic (K) and extrinsic (R,t) camera parameters simultaneously using a series of
measurements,

:F:S:K[R‘t}pw:Ppw, (2.55)

where p,, are known 3D world coordinates and
P = K[R]|t] (2.56)

is known as the camera matrix. Inspecting this equation, we see that we can post-multiply
K by R, and pre-multiply [R|t] by R}, and still end up with a valid calibration. Thus, it
is impossible based on image measurements alone to know the true orientation of the sensor
and the true camera intrinsics.

The choice of an upper-triangular form for K seems to be conventional. Given a full
3 x 4 camera matrix P = K[R|t], we can compute an upper-triangular K matrix using QR

52 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.9 Simplified camera intrinsics showing the focal length f and the optical center
(¢z,cy). The image width and height are W and H.

factorization (Golub and Van Loan 1996). (Note the unfortunate clash of terminologies: In
matrix algebra textbooks, R represents an upper-triangular (right of the diagonal) matrix; in
computer vision, R is an orthogonal rotation.)

There are several ways to write the upper-triangular form of K. One possibility is

fz 5 ¢
K = 0 fy cy |, 2.57)
0o 0 1

which uses independent focal lengths f, and f, for the sensor z and y dimensions. The entry
s encodes any possible skew between the sensor axes due to the sensor not being mounted
perpendicular to the optical axis and (c,, ¢,) denotes the optical center expressed in pixel
coordinates. Another possibility is

[s
K=|0 af ¢ |, (2.58)
0 0 1

where the aspect ratio a has been made explicit and a common focal length f is used.
In practice, for many applications an even simpler form can be obtained by setting a = 1
and s = 0,

f 0 c
K=|0 f ¢ |. (2.59)
0 0 1

Often, setting the origin at roughly the center of the image, e.g., (¢z,cy) = (W/2,H/2),
where W and H are the image height and width, can result in a perfectly usable camera
model with a single unknown, i.e., the focal length f.

2.1 Geometric primitives and transformations 53

W/2
B/2 f Z

(X,Y,2)

Figure 2.10 Central projection, showing the relationship between the 3D and 2D coordi-

nates, p and x, as well as the relationship between the focal length f, image width W, and
the field of view 6.

Figure 2.9 shows how these quantities can be visualized as part of a simplified imaging
model. Note that now we have placed the image plane in front of the nodal point (projection
center of the lens). The sense of the y axis has also been flipped to get a coordinate system
compatible with the way that most imaging libraries treat the vertical (row) coordinate. Cer-
tain graphics libraries, such as Direct3D, use a left-handed coordinate system, which can lead
to some confusion.

A note on focal lengths

The issue of how to express focal lengths is one that often causes confusion in implementing
computer vision algorithms and discussing their results. This is because the focal length
depends on the units used to measure pixels.

If we number pixel coordinates using integer values, say [0, W) x [0, H), the focal length
f and camera center (c,;, ¢,;) in (2.59) can be expressed as pixel values. How do these quan-
tities relate to the more familiar focal lengths used by photographers?

Figure 2.10 illustrates the relationship between the focal length f, the sensor width W,
and the field of view 6, which obey the formula

-1
tang = % or f= % [tan Z} . (2.60)
For conventional film cameras, W = 35mm, and hence f is also expressed in millimeters.
Since we work with digital images, it is more convenient to express W in pixels so that the
focal length f can be used directly in the calibration matrix K as in (2.59).

Another possibility is to scale the pixel coordinates so that they go from [—1,1) along
the longer image dimension and [—a~!,a~!) along the shorter axis, where a > 1 is the
image aspect ratio (as opposed to the sensor cell aspect ratio introduced earlier). This can be

54 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

accomplished using modified normalized device coordinates,
zh = 2w, —W)/S and v, = (2ys — H)/S, where S = max(W,H). (2.61)

This has the advantage that the focal length f and optical center (¢, ¢,) become independent
of the image resolution, which can be useful when using multi-resolution, image-processing
algorithms, such as image pyramids (Section 3.5).> The use of S instead of W also makes the
focal length the same for landscape (horizontal) and portrait (vertical) pictures, as is the case
in 35mm photography. (In some computer graphics textbooks and systems, normalized device
coordinates go from [—1,1] x [—1, 1], which requires the use of two different focal lengths
to describe the camera intrinsics (Watt 1995; OpenGL-ARB 1997).) Setting S = W = 2 in
(2.60), we obtain the simpler (unitless) relationship
f7 =tan 3 (2.62)
The conversion between the various focal length representations is straightforward, e.g.,
to go from a unitless f to one expressed in pixels, multiply by W/2, while to convert from an
f expressed in pixels to the equivalent 35mm focal length, multiply by 35/W.

Camera matrix

Now that we have shown how to parameterize the calibration matrix K, we can put the
camera intrinsics and extrinsics together to obtain a single 3 x 4 camera matrix

P:K[R‘t}. (2.63)

It is sometimes preferable to use an invertible 4 x 4 matrix, which can be obtained by not
dropping the last row in the P matrix,

- | K o|| R ¢ -
P_lOT 1H0T 1]_KE, (2.64)

where E is a 3D rigid-body (Euclidean) transformation and K is the full-rank calibration
matrix. The 4 x 4 camera matrix P can be used to map directly from 3D world coordinates
P = (T, Y, 2w, 1) to screen coordinates (plus disparity), z, = (74, ys, 1,d),

x, ~ Pp,, (2.65)

where ~ indicates equality up to scale. Note that after multiplication by P, the vector is
divided by the third element of the vector to obtain the normalized form x; = (zs, ys, 1, d).

2 To make the conversion truly accurate after a downsampling step in a pyramid, floating point values of 7/ and
H would have to be maintained since they can become non-integral if they are ever odd at a larger resolution in the
pyramid.

2.1 Geometric primitives and transformations 55

d=1.0 d=0.67 d=0.5 d d=0.5 d=0 d=-0.25

% //
| (X Yw Zuw) parallx (%vnYwsZw)
C M A C z
image plane \\\ image plane \

plane

d = inverse depth d = projective depth

Figure 2.11 Regular disparity (inverse depth) and projective depth (parallax from a reference
plane).

Plane plus parallax (projective depth)

In general, when using the 4 x 4 matrix P, we have the freedom to remap the last row to
whatever suits our purpose (rather than just being the “standard” interpretation of disparity as
inverse depth). Let us re-write the last row of P as p; = ss[fig|co], where ||fg| = 1. We
then have the equation

d=""(f - p, +co). (2.66)

where z = p, - p,, = T - (P, — ¢) is the distance of p,, from the camera center C' (2.25)
along the optical axis Z (Figure 2.11). Thus, we can interpret d as the projective disparity
or projective depth of a 3D scene point p,, from the reference plane 7y - p,, + co = 0
(Szeliski and Coughlan 1997; Szeliski and Golland 1999; Shade, Gortler, He et al. 1998;
Baker, Szeliski, and Anandan 1998). (The projective depth is also sometimes called parallax
in reconstruction algorithms that use the term plane plus parallax (Kumar, Anandan, and
Hanna 1994; Sawhney 1994).) Setting g = 0 and ¢y = 1, i.e., putting the reference plane
at infinity, results in the more standard d = 1/z version of disparity (Okutomi and Kanade
1993).

Another way to see this is to invert the P matrix so that we can map pixels plus disparity
directly back to 3D points,

B, =P 'z, (2.67)

In general, we can choose P to have whatever form is convenient, i.e., to sample space us-
ing an arbitrary projection. This can come in particularly handy when setting up multi-view
stereo reconstruction algorithms, since it allows us to sweep a series of planes (Section 11.1.2)
through space with a variable (projective) sampling that best matches the sensed image mo-
tions (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999).

56 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

p=(XY,Z1)

(a) (b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point co-
ordinate (X,Y, Z, 1) and the 2D projected point (x,y, 1, d); (b) planar homography induced
by points all lying on a common plane 7o - p + ¢ = 0.

Mapping from one camera to another

What happens when we take two images of a 3D scene from different camera positions or
orientations (Figure 2.12a)? Using the full rank 4 x 4 camera matrix P = K E from (2.64),
we can write the projection from world to screen coordinates as

zo ~ KoEop = Pop. (2.68)

Assuming that we know the z-buffer or disparity value dy for a pixel in one image, we can
compute the 3D point location p using

p~E; K, & (2.69)
and then project it into another image yielding

N ~ ~ R = 1 N
331NK1E1P:K1E1E0 1K0 ﬂ?o:PlPO :I}():Mlomo. (270)

Unfortunately, we do not usually have access to the depth coordinates of pixels in a regular
photographic image. However, for a planar scene, as discussed above in (2.66), we can
replace the last row of P in (2.64) with a general plane equation, 1y - p + ¢ that maps
points on the plane to dy = 0 values (Figure 2.12b). Thus, if we set dy = 0, we can ignore
the last column of M in (2.70) and also its last row, since we do not care about the final
z-buffer depth. The mapping equation (2.70) thus reduces to

&1 ~ Hio@o, (2.71)

where H 1 is a general 3 x 3 homography matrix and Z; and &, are now 2D homogeneous
coordinates (i.e., 3-vectors) (Szeliski 1996).This justifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes (Mann and Picard 1994;
Szeliski 1996).

2.1 Geometric primitives and transformations 57

The other special case where we do not need to know depth to perform inter-camera
mapping is when the camera is undergoing pure rotation (Section 9.1.3), i.e., when ¢y = ¢;.
In this case, we can write

&~ K RR)' K, %y = KR 0K, "%, (2.72)

which again can be represented with a 3 x 3 homography. If we assume that the calibration
matrices have known aspect ratios and centers of projection (2.59), this homography can be
parameterized by the rotation amount and the two unknown focal lengths. This particular
formulation is commonly used in image-stitching applications (Section 9.1.3).

Object-centered projection

When working with long focal length lenses, it often becomes difficult to reliably estimate
the focal length from image measurements alone. This is because the focal length and the
distance to the object are highly correlated and it becomes difficult to tease these two effects
apart. For example, the change in scale of an object viewed through a zoom telephoto lens
can either be due to a zoom change or a motion towards the user. (This effect was put to
dramatic use in some of Alfred Hitchcock’s film Verfigo, where the simultaneous change of
zoom and camera motion produces a disquieting effect.)

This ambiguity becomes clearer if we write out the projection equation corresponding to
the simple calibration matrix K (2.59),

Ty P+t
s = _ - 2.73
. frz.p+tz+c ()
Ty D+ 1y
s = - , 2.74
Y fTZ'p+tZ+Cy ()

where 7, r,, and r, are the three rows of R. If the distance to the object center ¢, > ||p||
(the size of the object), the denominator is approximately ¢, and the overall scale of the
projected object depends on the ratio of f to t,. It therefore becomes difficult to disentangle
these two quantities.

To see this more clearly, let n, = t;! and s = 7,f. We can then re-write the above
equations as

x " tr
s g Tz PHte o (2.75)
1 + nrz - -p
. t
ys = SM + ¢y (2.76)
14+mnr.-p

(Szeliski and Kang 1994; Pighin, Hecker, Lischinski ef al. 1998). The scale of the projection
s can be reliably estimated if we are looking at a known object (i.e., the 3D coordinates p

58 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

are known). The inverse distance 7, is now mostly decoupled from the estimates of s and
can be estimated from the amount of foreshortening as the object rotates. Furthermore, as
the lens becomes longer, i.e., the projection model becomes orthographic, there is no need to
replace a perspective imaging model with an orthographic one, since the same equation can
be used, with 1, — 0 (as opposed to f and ¢, both going to infinity). This allows us to form
a natural link between orthographic reconstruction techniques such as factorization and their
projective/perspective counterparts (Section 7.3).

2.1.6 Lens distortions

The above imaging models all assume that cameras obey a linear projection model where
straight lines in the world result in straight lines in the image. (This follows as a natural
consequence of linear matrix operations being applied to homogeneous coordinates.) Unfor-
tunately, many wide-angle lenses have noticeable radial distortion, which manifests itself as
a visible curvature in the projection of straight lines. (See Section 2.2.3 for a more detailed
discussion of lens optics, including chromatic aberration.) Unless this distortion is taken into
account, it becomes impossible to create highly accurate photorealistic reconstructions. For
example, image mosaics constructed without taking radial distortion into account will often
exhibit blurring due to the mis-registration of corresponding features before pixel blending
(Chapter 9).

Fortunately, compensating for radial distortion is not that difficult in practice. For most
lenses, a simple quartic model of distortion can produce good results. Let (x.,y.) be the
pixel coordinates obtained after perspective division but before scaling by focal length f and
shifting by the optical center (¢, ¢y), i.e.,

Tz'p""t:r
T, = ——
rz'p+tz
Ty P+t
Yo = & .77
rz'p+tz

The radial distortion model says that coordinates in the observed images are displaced away
(barrel distortion) or towards (pincushion distortion) the image center by an amount propor-
tional to their radial distance (Figure 2.13a-b).> The simplest radial distortion models use
low-order polynomials, e.g.,

T = z(l+ Iﬁ?‘? + mgrf)
Je = ye(l+ Karl + rory), (2.78)

3 Anamorphic lenses, which are widely used in feature film production, do not follow this radial distortion model.
Instead, they can be thought of, to a first approximation, as inducing different vertical and horizontal scalings, i.e.,
non-square pixels.

2.1 Geometric primitives and transformations 59

| IS
"lﬁ-:.h!fgyl,&;;urui'

if]

dii

(b) (©)

Figure 2.13 Radial lens distortions: (a) barrel, (b) pincushion, and (c) fisheye. The fisheye
image spans almost 180° from side-to-side.

2 _

where 72 = 22 + y?2 and k1 and k» are called the radial distortion parameters.* After the

radial distortion step, the final pixel coordinates can be computed using

s frl +c,

ys = fy.+ecy. (2.79)

A variety of techniques can be used to estimate the radial distortion parameters for a given
lens, as discussed in Section 6.3.5.

Sometimes the above simplified model does not model the true distortions produced by
complex lenses accurately enough (especially at very wide angles). A more complete ana-
Iytic model also includes tangential distortions and decentering distortions (Slama 1980), but
these distortions are not covered in this book.

Fisheye lenses (Figure 2.13c) require a model that differs from traditional polynomial
models of radial distortion. Fisheye lenses behave, to a first approximation, as equi-distance
projectors of angles away from the optical axis (Xiong and Turkowski 1997), which is the
same as the polar projection described by Equations (9.22-9.24). Xiong and Turkowski
(1997) describe how this model can be extended with the addition of an extra quadratic cor-
rection in ¢ and how the unknown parameters (center of projection, scaling factor s, etc.)
can be estimated from a set of overlapping fisheye images using a direct (intensity-based)
non-linear minimization algorithm.

For even larger, less regular distortions, a parametric distortion model using splines may
be necessary (Goshtasby 1989). If the lens does not have a single center of projection, it

4 Sometimes the relationship between z. and & is expressed the other way around, i.e., zc = &c(1 + k172 +
ko72). This is convenient if we map image pixels into (warped) rays by dividing through by f. We can then undistort
the rays and have true 3D rays in space.

60 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

may become necessary to model the 3D line (as opposed to direction) corresponding to each
pixel separately (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Sautot et al.
1992; Grossberg and Nayar 2001; Sturm and Ramalingam 2004; Tardif, Sturm, Trudeau et
al. 2009). Some of these techniques are described in more detail in Section 6.3.5, which
discusses how to calibrate lens distortions.

There is one subtle issue associated with the simple radial distortion model that is often
glossed over. We have introduced a non-linearity between the perspective projection and final
sensor array projection steps. Therefore, we cannot, in general, post-multiply an arbitrary 3 x
3 matrix K with a rotation to put it into upper-triangular form and absorb this into the global
rotation. However, this situation is not as bad as it may at first appear. For many applications,
keeping the simplified diagonal form of (2.59) is still an adequate model. Furthermore, if we
correct radial and other distortions to an accuracy where straight lines are preserved, we have
essentially converted the sensor back into a linear imager and the previous decomposition still
applies.

2.2 Photometric image formation

In modeling the image formation process, we have described how 3D geometric features in
the world are projected into 2D features in an image. However, images are not composed of
2D features. Instead, they are made up of discrete color or intensity values. Where do these
values come from? How do they relate to the lighting in the environment, surface properties
and geometry, camera optics, and sensor properties (Figure 2.14)? In this section, we develop
a set of models to describe these interactions and formulate a generative process of image
formation. A more detailed treatment of these topics can be found in other textbooks on
computer graphics and image synthesis (Glassner 1995; Weyrich, Lawrence, Lensch et al.
2008; Foley, van Dam, Feiner et al. 1995; Watt 1995; Cohen and Wallace 1993; Sillion and
Puech 1994).

2.2.1 Lighting

Images cannot exist without light. To produce an image, the scene must be illuminated with
one or more light sources. (Certain modalities such as fluorescent microscopy and X-ray
tomography do not fit this model, but we do not deal with them in this book.) Light sources
can generally be divided into point and area light sources.

A point light source originates at a single location in space (e.g., a small light bulb),
potentially at infinity (e.g., the sun). (Note that for some applications such as modeling soft
shadows (penumbras), the sun may have to be treated as an area light source.) In addition to
its location, a point light source has an intensity and a color spectrum, i.e., a distribution over

2.2 Photometric image formation 61

light ﬁ

source

Figure 2.14 A simplified model of photometric image formation. Light is emitted by one
or more light sources and is then reflected from an object’s surface. A portion of this light is
directed towards the camera. This simplified model ignores multiple reflections, which often
occur in real-world scenes.

wavelengths L(A). The intensity of a light source falls off with the square of the distance
between the source and the object being lit, because the same light is being spread over a
larger (spherical) area. A light source may also have a directional falloff (dependence), but
we ignore this in our simplified model.

Area light sources are more complicated. A simple area light source such as a fluorescent
ceiling light fixture with a diffuser can be modeled as a finite rectangular area emitting light
equally in all directions (Cohen and Wallace 1993; Sillion and Puech 1994; Glassner 1995).
When the distribution is strongly directional, a four-dimensional lightfield can be used instead
(Ashdown 1993).

A more complex light distribution that approximates, say, the incident illumination on an
object sitting in an outdoor courtyard, can often be represented using an environment map
(Greene 1986) (originally called a reflection map (Blinn and Newell 1976)). This representa-
tion maps incident light directions ¥ to color values (or wavelengths, \),

L(5:), (2.80)

and is equivalent to assuming that all light sources are at infinity. Environment maps can be
represented as a collection of cubical faces (Greene 1986), as a single longitude—latitude map
(Blinn and Newell 1976), or as the image of a reflecting sphere (Watt 1995). A convenient
way to get a rough model of a real-world environment map is to take an image of a reflective
mirrored sphere and to unwrap this image onto the desired environment map (Debevec 1998).
Watt (1995) gives a nice discussion of environment mapping, including the formulas needed
to map directions to pixels for the three most commonly used representations.

62 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

5>

() (b)

Figure 2.15 (a) Light scatters when it hits a surface. (b) The bidirectional reflectance
distribution function (BRDF) f(6;, ¢;,0,, ¢,-) is parameterized by the angles that the inci-
dent, ¥;, and reflected, ¥,., light ray directions make with the local surface coordinate frame
(d,d,, 7).

2.2.2 Reflectance and shading

When light hits an object’s surface, it is scattered and reflected (Figure 2.15a). Many different
models have been developed to describe this interaction. In this section, we first describe the
most general form, the bidirectional reflectance distribution function, and then look at some
more specialized models, including the diffuse, specular, and Phong shading models. We also
discuss how these models can be used to compute the global illumination corresponding to a
scene.

The Bidirectional Reflectance Distribution Function (BRDF)

The most general model of light scattering is the bidirectional reflectance distribution func-
tion (BRDF).> Relative to some local coordinate frame on the surface, the BRDF is a four-
dimensional function that describes how much of each wavelength arriving at an incident
direction ¥; is emitted in a reflected direction ¥, (Figure 2.15b). The function can be written
in terms of the angles of the incident and reflected directions relative to the surface frame as

fr(9i>¢i>6T7¢T;A)' (281)

The BRDF is reciprocal, i.e., because of the physics of light transport, you can interchange
the roles of ¥; and ¥, and still get the same answer (this is sometimes called Helmholtz
reciprocity).

5 Actually, even more general models of light transport exist, including some that model spatial variation along
the surface, sub-surface scattering, and atmospheric effects—see Section 12.7.1—(Dorsey, Rushmeier, and Sillion
2007; Weyrich, Lawrence, Lensch et al. 2008).

2.2 Photometric image formation 63

Most surfaces are isotropic, i.e., there are no preferred directions on the surface as far
as light transport is concerned. (The exceptions are anisotropic surfaces such as brushed
(scratched) aluminum, where the reflectance depends on the light orientation relative to the
direction of the scratches.) For an isotropic material, we can simplify the BRDF to

fT(eiaeTﬁ |¢7 - ¢Z|?A) or fT(ﬁiaﬁTvﬁ;)\)7 (282)

since the quantities 6;, 6,. and ¢,. — ¢; can be computed from the directions 9;, ¥,., and 7.

To calculate the amount of light exiting a surface point p in a direction 9,. under a given
lighting condition, we integrate the product of the incoming light L;(®%;; A\) with the BRDF
(some authors call this step a convolution). Taking into account the foreshortening factor
cost 6;, we obtain

Ly (9,3 0) = / Li (935 \) £ (9, By, 3 \) cos™ 6; di;, (2.83)

where
cost 0; = max(0, cos 6;). (2.84)

If the light sources are discrete (a finite number of point light sources), we can replace the
integral with a summation,

Ly(8030) = > Li(A) fy (83, By, 73) cos™ 6. (2.85)

BRDFs for a given surface can be obtained through physical modeling (Torrance and
Sparrow 1967; Cook and Torrance 1982; Glassner 1995), heuristic modeling (Phong 1975), or
through empirical observation (Ward 1992; Westin, Arvo, and Torrance 1992; Dana, van Gin-
neken, Nayar et al. 1999; Dorsey, Rushmeier, and Sillion 2007; Weyrich, Lawrence, Lensch
et al. 2008).° Typical BRDFs can often be split into their diffuse and specular components,
as described below.

Diffuse reflection

The diffuse component (also known as Lambertian or matte reflection) scatters light uni-
formly in all directions and is the phenomenon we most normally associate with shading,
e.g., the smooth (non-shiny) variation of intensity with surface normal that is seen when ob-
serving a statue (Figure 2.16). Diffuse reflection also often imparts a strong body color to
the light since it is caused by selective absorption and re-emission of light inside the object’s
material (Shafer 1985; Glassner 1995).

6 See http://www]1.cs.columbia.edu/CAVE/software/curet/ for a database of some empirically sampled BRDFs.

http://www1.cs.columbia.edu/CAVE/software/curet/

64 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.16 This close-up of a statue shows both diffuse (smooth shading) and specular
(shiny highlight) reflection, as well as darkening in the grooves and creases due to reduced
light visibility and interreflections. (Photo courtesy of the Caltech Vision Lab, http://www.
vision.caltech.edu/archive.html.)

While light is scattered uniformly in all directions, i.e., the BRDF is constant,
fd(ﬁi,’l’}r,'ﬁ,;)\) = fd(A)) (286)

the amount of light depends on the angle between the incident light direction and the surface
normal 6;. This is because the surface area exposed to a given amount of light becomes larger
at oblique angles, becoming completely self-shadowed as the outgoing surface normal points
away from the light (Figure 2.17a). (Think about how you orient yourself towards the sun or
fireplace to get maximum warmth and how a flashlight projected obliquely against a wall is
less bright than one pointing directly at it.) The shading equation for diffuse reflection can
thus be written as

La(8r30) = > Li(A) fa(A\) cos™ 0; = > " Li(A) fa(N)[#; -] T, (2.87)

where
[0; - AT = max(0,D; -). (2.88)

Specular reflection

The second major component of a typical BRDF is specular (gloss or highlight) reflection,
which depends strongly on the direction of the outgoing light. Consider light reflecting off a
mirrored surface (Figure 2.17b). Incident light rays are reflected in a direction that is rotated
by 180° around the surface normal 7. Using the same notation as in Equations (2.29-2.30),

http://www.vision.caltech.edu/archive.html
http://www.vision.caltech.edu/archive.html

2.2 Photometric image formation 65

DA _
LA Vien =1
O<vien<1

(a) b)

Figure 2.17 (a) The diminution of returned light caused by foreshortening depends on ¥, - 1,
the cosine of the angle between the incident light direction ©; and the surface normal 7. (b)
Mirror (specular) reflection: The incident light ray direction ¥; is reflected onto the specular
direction §; around the surface normal 7.

we can compute the specular reflection direction 3; as

8 =v —v. = (2an" —I)v,. (2.89)

The amount of light reflected in a given direction ¥,. thus depends on the angle 6, =
cos™ ! (0, - 8;) between the view direction ¥, and the specular direction §;. For example, the
Phong (1975) model uses a power of the cosine of the angle,

fs(05; \) = Es(\) cos® 0, (2.90)
while the Torrance and Sparrow (1967) micro-facet model uses a Gaussian,
fs(05;) = kg (N) exp(—c26?). (2.91)

Larger exponents k. (or inverse Gaussian widths cs) correspond to more specular surfaces
with distinct highlights, while smaller exponents better model materials with softer gloss.

Phong shading

Phong (1975) combined the diffuse and specular components of reflection with another term,
which he called the ambient illumination. This term accounts for the fact that objects are
generally illuminated not only by point light sources but also by a general diffuse illumination
corresponding to inter-reflection (e.g., the walls in a room) or distant sources, such as the

66 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

—— Ambient
— Diffuse
—Exp=10
—Exp=100
—Exp=1000

-90 -80 70 -60 50 -40 -30 20 -10 O 10 20 30 40 50 60 70 80 90 05 04 03

(a)

Figure 2.18 Cross-section through a Phong shading model BRDF for a fixed incident illu-
mination direction: (a) component values as a function of angle away from surface normal;
(b) polar plot. The value of the Phong exponent k. is indicated by the “Exp” labels and the
light source is at an angle of 30° away from the normal.

blue sky. In the Phong model, the ambient term does not depend on surface orientation, but
depends on the color of both the ambient illumination L, () and the object k, (),

fa(>‘) = ka(/\)La()‘) (2.92)
Putting all of these terms together, we arrive at the Phong shading model,

Ly (8,5 0) = ka(AN) La(A) + ka(X ZL ZL -8k, (2.93)

Figure 2.18 shows a typical set of Phong shading model components as a function of the
angle away from the surface normal (in a plane containing both the lighting direction and the
viewer).

Typically, the ambient and diffuse reflection color distributions k, () and kq()\) are the
same, since they are both due to sub-surface scattering (body reflection) inside the surface
material (Shafer 1985). The specular reflection distribution k() is often uniform (white),
since it is caused by interface reflections that do not change the light color. (The exception
to this are metallic materials, such as copper, as opposed to the more common dielectric
materials, such as plastics.)

The ambient illumination L, () often has a different color cast from the direct light
sources L;()), e.g., it may be blue for a sunny outdoor scene or yellow for an interior lit
with candles or incandescent lights. (The presence of ambient sky illumination in shadowed
areas is what often causes shadows to appear bluer than the corresponding lit portions of a
scene). Note also that the diffuse component of the Phong model (or of any shading model)
depends on the angle of the incoming light source ¥;, while the specular component depends
on the relative angle between the viewer v,. and the specular reflection direction §; (which
itself depends on the incoming light direction ©; and the surface normal 72).

2.2 Photometric image formation 67

The Phong shading model has been superseded in terms of physical accuracy by a number
of more recently developed models in computer graphics, including the model developed by
Cook and Torrance (1982) based on the original micro-facet model of Torrance and Sparrow
(1967). Until recently, most computer graphics hardware implemented the Phong model but
the recent advent of programmable pixel shaders makes the use of more complex models
feasible.

Di-chromatic reflection model

The Torrance and Sparrow (1967) model of reflection also forms the basis of Shafer’s (1985)
di-chromatic reflection model, which states that the apparent color of a uniform material lit
from a single source depends on the sum of two terms,

ci(N)my (05,05, 7) + co(N)mp (0, 05, 1), (2.95)

i.e., the radiance of the light reflected at the inferface, L;, and the radiance reflected at the sur-
face body, L. Each of these, in turn, is a simple product between a relative power spectrum
¢()\), which depends only on wavelength, and a magnitude m(®,., ¥;, 7¢), which depends only
on geometry. (This model can easily be derived from a generalized version of Phong’s model
by assuming a single light source and no ambient illumination, and re-arranging terms.) The
di-chromatic model has been successfully used in computer vision to segment specular col-
ored objects with large variations in shading (Klinker 1993) and more recently has inspired
local two-color models for applications such Bayer pattern demosaicing (Bennett, Uytten-
daele, Zitnick et al. 2006).

Global illumination (ray tracing and radiosity)

The simple shading model presented thus far assumes that light rays leave the light sources,
bounce off surfaces visible to the camera, thereby changing in intensity or color, and arrive
at the camera. In reality, light sources can be shadowed by occluders and rays can bounce
multiple times around a scene while making their trip from a light source to the camera.
Two methods have traditionally been used to model such effects. If the scene is mostly
specular (the classic example being scenes made of glass objects and mirrored or highly pol-
ished balls), the preferred approach is ray tracing or path tracing (Glassner 1995; Akenine-
Moller and Haines 2002; Shirley 2005), which follows individual rays from the camera across
multiple bounces towards the light sources (or vice versa). If the scene is composed mostly
of uniform albedo simple geometry illuminators and surfaces, radiosity (global illumination)
techniques are preferred (Cohen and Wallace 1993; Sillion and Puech 1994; Glassner 1995).

68 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Combinations of the two techniques have also been developed (Wallace, Cohen, and Green-
berg 1987), as well as more general light transport techniques for simulating effects such as
the caustics cast by rippling water.

The basic ray tracing algorithm associates a light ray with each pixel in the camera im-
age and finds its intersection with the nearest surface. A primary contribution can then be
computed using the simple shading equations presented previously (e.g., Equation (2.93))
for all light sources that are visible for that surface element. (An alternative technique for
computing which surfaces are illuminated by a light source is to compute a shadow map,
or shadow buffer, i.e., a rendering of the scene from the light source’s perspective, and then
compare the depth of pixels being rendered with the map (Williams 1983; Akenine-Moller
and Haines 2002).) Additional secondary rays can then be cast along the specular direction
towards other objects in the scene, keeping track of any attenuation or color change that the
specular reflection induces.

Radiosity works by associating lightness values with rectangular surface areas in the scene
(including area light sources). The amount of light interchanged between any two (mutually
visible) areas in the scene can be captured as a form factor, which depends on their relative
orientation and surface reflectance properties, as well as the 1/r2 fall-off as light is distributed
over a larger effective sphere the further away it is (Cohen and Wallace 1993; Sillion and
Puech 1994; Glassner 1995). A large linear system can then be set up to solve for the final
lightness of each area patch, using the light sources as the forcing function (right hand side).
Once the system has been solved, the scene can be rendered from any desired point of view.
Under certain circumstances, it is possible to recover the global illumination in a scene from
photographs using computer vision techniques (Yu, Debevec, Malik et al. 1999).

The basic radiosity algorithm does not take into account certain near field effects, such
as the darkening inside corners and scratches, or the limited ambient illumination caused
by partial shadowing from other surfaces. Such effects have been exploited in a number of
computer vision algorithms (Nayar, Ikeuchi, and Kanade 1991; Langer and Zucker 1994).

While all of these global illumination effects can have a strong effect on the appearance
of a scene, and hence its 3D interpretation, they are not covered in more detail in this book.
(But see Section 12.7.1 for a discussion of recovering BRDFs from real scenes and objects.)

2.2.3 Optics

Once the light from a scene reaches the camera, it must still pass through the lens before
reaching the sensor (analog film or digital silicon). For many applications, it suffices to
treat the lens as an ideal pinhole that simply projects all rays through a common center of
projection (Figures 2.8 and 2.9).

However, if we want to deal with issues such as focus, exposure, vignetting, and aber-

2.2 Photometric image formation 69

Fif =100 mm4+

f.0

R

AZi~

-
fa——7;=102 mm "P Z,=5m >

Figure 2.19 A thin lens of focal length f focuses the light from a plane a distance z,, in front
of the lens at a distance z; behind the lens, where i + z% = % If the focal plane (vertical
gray line next to ¢) is moved forward, the images are no longer in focus and the circle of
confusion c (small thick line segments) depends on the distance of the image plane motion
Az; relative to the lens aperture diameter d. The field of view (f.0.v.) depends on the ratio
between the sensor width W and the focal length f (or, more precisely, the focusing distance
zi, which is usually quite close to f).

ration, we need to develop a more sophisticated model, which is where the study of optics
comes in (Moller 1988; Hecht 2001; Ray 2002).

Figure 2.19 shows a diagram of the most basic lens model, i.e., the thin lens composed
of a single piece of glass with very low, equal curvature on both sides. According to the
lens law (which can be derived using simple geometric arguments on light ray refraction), the
relationship between the distance to an object z, and the distance behind the lens at which a
focused image is formed z; can be expressed as

1,11 (2.96)
z2o z f
where f is called the focal length of the lens. If we let z, — o0, i.e., we adjust the lens (move
the image plane) so that objects at infinity are in focus, we get z; = f, which is why we can
think of a lens of focal length f as being equivalent (to a first approximation) to a pinhole a
distance f from the focal plane (Figure 2.10), whose field of view is given by (2.60).

If the focal plane is moved away from its proper in-focus setting of z; (e.g., by twisting
the focus ring on the lens), objects at z, are no longer in focus, as shown by the gray plane in
Figure 2.19. The amount of mis-focus is measured by the circle of confusion c (shown as short
thick blue line segments on the gray plane).” The equation for the circle of confusion can be
derived using similar triangles; it depends on the distance of travel in the focal plane Az;
relative to the original focus distance z; and the diameter of the aperture d (see Exercise 2.4).

7 If the aperture is not completely circular, e.g., if it is caused by a hexagonal diaphragm, it is sometimes possible
to see this effect in the actual blur function (Levin, Fergus, Durand et al. 2007; Joshi, Szeliski, and Kriegman 2008)
or in the “glints” that are seen when shooting into the sun.

70 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Focus Ring

Focus Distance

% 1
; ; A VTN RV IR
Depth of Field Indicator [NGIRKINCE- S -SRI NI |
Set Aperture Ring 16 11 8 56 4 28

(a) (b)

Figure 2.20 Regular and zoom lens depth of field indicators.

The allowable depth variation in the scene that limits the circle of confusion to an accept-
able number is commonly called the depth of field and is a function of both the focus distance
and the aperture, as shown diagrammatically by many lens markings (Figure 2.20). Since this
depth of field depends on the aperture diameter d, we also have to know how this varies with
the commonly displayed f-number, which is usually denoted as f/# or N and is defined as

f
d7

where the focal length f and the aperture diameter d are measured in the same unit (say,

f/#=N= (2.97)

millimeters).

The usual way to write the f-number is to replace the # in f/# with the actual number,
ie., f/1.4,f/2,f/2.8,..., f/22. (Alternatively, we can say N = 1.4, etc.) An easy way to
interpret these numbers is to notice that dividing the focal length by the f-number gives us the
diameter d, so these are just formulas for the aperture diameter.®

Notice that the usual progression for f-numbers is in full stops, which are multiples of v/2,
since this corresponds to doubling the area of the entrance pupil each time a smaller f-number
is selected. (This doubling is also called changing the exposure by one exposure value or EV.
It has the same effect on the amount of light reaching the sensor as doubling the exposure
duration, e.g., from 1/125 to 1/250, see Exercise 2.5.)

Now that you know how to convert between f-numbers and aperture diameters, you can
construct your own plots for the depth of field as a function of focal length f, circle of
confusion ¢, and focus distance z,, as explained in Exercise 2.4 and see how well these match
what you observe on actual lenses, such as those shown in Figure 2.20.

Of course, real lenses are not infinitely thin and therefore suffer from geometric aber-
rations, unless compound elements are used to correct for them. The classic five Seidel
aberrations, which arise when using third-order optics, include spherical aberration, coma,
astigmatism, curvature of field, and distortion (Moller 1988; Hecht 2001; Ray 2002).

8 This also explains why, with zoom lenses, the f-number varies with the current zoom (focal length) setting.

2.2 Photometric image formation 71

‘47? = lOlmmA

Fiz.’:lOBmm 1L Zo=5m —}

Figure 2.21 1In a lens subject to chromatic aberration, light at different wavelengths (e.g.,
the red and blur arrows) is focused with a different focal length f” and hence a different depth
z}, resulting in both a geometric (in-plane) displacement and a loss of focus.

Chromatic aberration

Because the index of refraction for glass varies slightly as a function of wavelength, sim-
ple lenses suffer from chromatic aberration, which is the tendency for light of different
colors to focus at slightly different distances (and hence also with slightly different mag-
nification factors), as shown in Figure 2.21. The wavelength-dependent magnification fac-
tor, i.e., the transverse chromatic aberration, can be modeled as a per-color radial distortion
(Section 2.1.6) and, hence, calibrated using the techniques described in Section 6.3.5. The
wavelength-dependent blur caused by longitudinal chromatic aberration can be calibrated
using techniques described in Section 10.1.4. Unfortunately, the blur induced by longitudinal
aberration can be harder to undo, as higher frequencies can get strongly attenuated and hence
hard to recover.

In order to reduce chromatic and other kinds of aberrations, most photographic lenses
today are compound lenses made of different glass elements (with different coatings). Such
lenses can no longer be modeled as having a single nodal point P through which all of the
rays must pass (when approximating the lens with a pinhole model). Instead, these lenses
have both a front nodal point, through which the rays enter the lens, and a rear nodal point,
through which they leave on their way to the sensor. In practice, only the location of the front
nodal point is of interest when performing careful camera calibration, e.g., when determining
the point around which to rotate to capture a parallax-free panorama (see Section 9.1.3).

Not all lenses, however, can be modeled as having a single nodal point. In particular, very
wide-angle lenses such as fisheye lenses (Section 2.1.6) and certain catadioptric imaging
systems consisting of lenses and curved mirrors (Baker and Nayar 1999) do not have a single
point through which all of the acquired light rays pass. In such cases, it is preferable to
explicitly construct a mapping function (look-up table) between pixel coordinates and 3D
rays in space (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Sautot et al.

72 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

v

|
}472.=102mm =l= Zo=5m

Figure 2.22 The amount of light hitting a pixel of surface area §i depends on the square of
the ratio of the aperture diameter d to the focal length f, as well as the fourth power of the

off-axis angle « cosine, cos* a.

1992; Grossberg and Nayar 2001; Sturm and Ramalingam 2004; Tardif, Sturm, Trudeau et
al. 2009), as mentioned in Section 2.1.6.

Vignetting

Another property of real-world lenses is vignetting, which is the tendency for the brightness
of the image to fall off towards the edge of the image.

Two kinds of phenomena usually contribute to this effect (Ray 2002). The first is called
natural vignetting and is due to the foreshortening in the object surface, projected pixel, and
lens aperture, as shown in Figure 2.22. Consider the light leaving the object surface patch
of size do located at an off-axis angle . Because this patch is foreshortened with respect
to the camera lens, the amount of light reaching the lens is reduced by a factor cos . The
amount of light reaching the lens is also subject to the usual 1/72 fall-off; in this case, the
distance 7, = 2,/ cosa. The actual area of the aperture through which the light passes
is foreshortened by an additional factor cos a, i.e., the aperture as seen from point O is an
ellipse of dimensions d x d cos «. Putting all of these factors together, we see that the amount
of light leaving O and passing through the aperture on its way to the image pixel located at [
is proportional to

Socosa (d* rd*
2 T (2) cosa = 601;3 cos” a. (2.98)

Since triangles AOPQ and AIP.J are similar, the projected areas of of the object surface do
and image pixel &7 are in the same (squared) ratio as z, : z;,

o 22
5= Z—g (2.99)

Putting these together, we obtain the final relationship between the amount of light reaching

2.3 The digital camera 73

pixel ¢ and the aperture diameter d, the focusing distance z; ~ f, and the off-axis angle a,

4 4 4\’
60%2 costa = 52%2 cost a ~ (5@% (f) cos? a, (2.100)
which is called the fundamental radiometric relation between the scene radiance L and the
light (irradiance) E reaching the pixel sensor,

2
E= L% (;) cos* a, (2.101)
(Horn 1986; Nalwa 1993; Hecht 2001; Ray 2002). Notice in this equation how the amount of
light depends on the pixel surface area (which is why the smaller sensors in point-and-shoot
cameras are so much noisier than digital single lens reflex (SLR) cameras), the inverse square
of the f-stop N = f/d (2.97), and the fourth power of the cos? v off-axis fall-off, which is
the natural vignetting term.

The other major kind of vignetting, called mechanical vignetting, is caused by the internal
occlusion of rays near the periphery of lens elements in a compound lens, and cannot easily
be described mathematically without performing a full ray-tracing of the actual lens design.’
However, unlike natural vignetting, mechanical vignetting can be decreased by reducing the
camera aperture (increasing the f-number). It can also be calibrated (along with natural vi-
gnetting) using special devices such as integrating spheres, uniformly illuminated targets, or
camera rotation, as discussed in Section 10.1.3.

2.3 The digital camera

After starting from one or more light sources, reflecting off one or more surfaces in the world,
and passing through the camera’s optics (lenses), light finally reaches the imaging sensor.
How are the photons arriving at this sensor converted into the digital (R, G, B) values that
we observe when we look at a digital image? In this section, we develop a simple model
that accounts for the most important effects such as exposure (gain and shutter speed), non-
linear mappings, sampling and aliasing, and noise. Figure 2.23, which is based on camera
models developed by Healey and Kondepudy (1994); Tsin, Ramesh, and Kanade (2001); Liu,
Szeliski, Kang et al. (2008), shows a simple version of the processing stages that occur in
modern digital cameras. Chakrabarti, Scharstein, and Zickler (2009) developed a sophisti-
cated 24-parameter model that is an even better match to the processing performed in today’s
cameras.

9 There are some empirical models that work well in practice (Kang and Weiss 2000; Zheng, Lin, and Kang
2006).

74 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Camera .
Tradiance ™ Optics » Aperture » Shutter
Camera Body
| Sensor | Gain A/D RAW
[(cCD/CMOS) “| (1SO) = ' o
Sensor chip
= Demosaic - (Sharpen)
L White L . JPEG
H» Gamma/curve H» Compress >
Balance
DSP

Figure 2.23 Image sensing pipeline, showing the various sources of noise as well as typical
digital post-processing steps.

Light falling on an imaging sensor is usually picked up by an active sensing area, inte-
grated for the duration of the exposure (usually expressed as the shutter speed in a fraction of
asecond, e.g., 3= a5+ 35)» and then passed to a set of sense amplifiers . The two main kinds
of sensor used in digital still and video cameras today are charge-coupled device (CCD) and
complementary metal oxide on silicon (CMOS).

In a CCD, photons are accumulated in each active well during the exposure time. Then,
in a transfer phase, the charges are transferred from well to well in a kind of “bucket brigade”
until they are deposited at the sense amplifiers, which amplify the signal and pass it to
an analog-to-digital converter (ADC).'” Older CCD sensors were prone to blooming, when
charges from one over-exposed pixel spilled into adjacent ones, but most newer CCDs have
anti-blooming technology (“troughs” into which the excess charge can spill).

In CMOS, the photons hitting the sensor directly affect the conductivity (or gain) of a
photodetector, which can be selectively gated to control exposure duration, and locally am-
plified before being read out using a multiplexing scheme. Traditionally, CCD sensors
outperformed CMOS in quality sensitive applications, such as digital SLRs, while CMOS
was better for low-power applications, but today CMOS is used in most digital cameras.

The main factors affecting the performance of a digital image sensor are the shutter speed,
sampling pitch, fill factor, chip size, analog gain, sensor noise, and the resolution (and quality)

10 In digital still cameras, a complete frame is captured and then read out sequentially at once. However, if video
is being captured, a rolling shutter, which exposes and transfers each line separately, is often used. In older video
cameras, the even fields (lines) were scanned first, followed by the odd fields, in a process that is called interlacing.

2.3 The digital camera 75

of the analog-to-digital converter. Many of the actual values for these parameters can be read
from the EXIF tags embedded with digital images. while others can be obtained from the
camera manufacturers’ specification sheets or from camera review or calibration Web sites.!!

Shutter speed. The shutter speed (exposure time) directly controls the amount of light
reaching the sensor and, hence, determines if images are under- or over-exposed. (For bright
scenes, where a large aperture or slow shutter speed are desired to get a shallow depth of field
or motion blur, neutral density filters are sometimes used by photographers.) For dynamic
scenes, the shutter speed also determines the amount of motion blur in the resulting picture.
Usually, a higher shutter speed (less motion blur) makes subsequent analysis easier (see Sec-
tion 10.3 for techniques to remove such blur). However, when video is being captured for
display, some motion blur may be desirable to avoid stroboscopic effects.

Sampling pitch. The sampling pitch is the physical spacing between adjacent sensor cells
on the imaging chip. A sensor with a smaller sampling pitch has a higher sampling density and
hence provides a higher resolution (in terms of pixels) for a given active chip area. However,
a smaller pitch also means that each sensor has a smaller area and cannot accumulate as many
photons; this makes it not as light sensitive and more prone to noise.

Fill factor. The fill factor is the active sensing area size as a fraction of the theoretically
available sensing area (the product of the horizontal and vertical sampling pitches). Higher
fill factors are usually preferable, as they result in more light capture and less aliasing (see
Section 2.3.1). However, this must be balanced with the need to place additional electronics
between the active sense areas. The fill factor of a camera can be determined empirically
using a photometric camera calibration process (see Section 10.1.4).

Chip size. Video and point-and-shoot cameras have traditionally used small chip areas (i—
inch to %—inch sensors'?), while digital SLR cameras try to come closer to the traditional size

of a 35mm film frame.!?

When overall device size is not important, having a larger chip
size is preferable, since each sensor cell can be more photo-sensitive. (For compact cameras,

a smaller chip means that all of the optics can be shrunk down proportionately.) However,

T http://www.clarkvision.com/imagedetail/digital sensor.performance.summary/ .

12 These numbers refer to the “tube diameter” of the old vidicon tubes used in video cameras (http://www.
dpreview.com/learn/?/Glossary/Camera_System/sensor_sizes_01.htm). The 1/2.5” sensor on the Canon SD800 cam-
era actually measures 5.76mm X 4.29mm, i.e., a sixth of the size (on side) of a 35mm full-frame (36mm X 24mm)
DSLR sensor.

13 When a DSLR chip does not fill the 35mm full frame, it results in a multiplier effect on the lens focal length.
For example, a chip that is only 0.6 the dimension of a 35mm frame will make a 50mm lens image the same angular
extent as a 50/0.6 = 50 x 1.6 =80mm lens, as demonstrated in (2.60).

http://www.clarkvision.com/imagedetail/digital.sensor.performance.summary/
http://www.dpreview.com/learn/?/Glossary/Camera_System/sensor_sizes_01.htm
http://www.dpreview.com/learn/?/Glossary/Camera_System/sensor_sizes_01.htm

76 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

larger chips are more expensive to produce, not only because fewer chips can be packed into
each wafer, but also because the probability of a chip defect goes up linearly with the chip
area.

Analog gain. Before analog-to-digital conversion, the sensed signal is usually boosted by
a sense amplifier. In video cameras, the gain on these amplifiers was traditionally controlled
by automatic gain control (AGC) logic, which would adjust these values to obtain a good
overall exposure. In newer digital still cameras, the user now has some additional control
over this gain through the ISO setting, which is typically expressed in ISO standard units
such as 100, 200, or 400. Since the automated exposure control in most cameras also adjusts
the aperture and shutter speed, setting the ISO manually removes one degree of freedom from
the camera’s control, just as manually specifying aperture and shutter speed does. In theory, a
higher gain allows the camera to perform better under low light conditions (less motion blur
due to long exposure times when the aperture is already maxed out). In practice, however,
higher ISO settings usually amplify the sensor noise.

Sensor noise. Throughout the whole sensing process, noise is added from various sources,
which may include fixed pattern noise, dark current noise, shot noise, amplifier noise and
quantization noise (Healey and Kondepudy 1994; Tsin, Ramesh, and Kanade 2001). The
final amount of noise present in a sampled image depends on all of these quantities, as well
as the incoming light (controlled by the scene radiance and aperture), the exposure time, and
the sensor gain. Also, for low light conditions where the noise is due to low photon counts, a
Poisson model of noise may be more appropriate than a Gaussian model.

As discussed in more detail in Section 10.1.1, Liu, Szeliski, Kang ez al. (2008) use this
model, along with an empirical database of camera response functions (CRFs) obtained by
Grossberg and Nayar (2004), to estimate the noise level function (NLF) for a given image,
which predicts the overall noise variance at a given pixel as a function of its brightness (a
separate NLF is estimated for each color channel). An alternative approach, when you have
access to the camera before taking pictures, is to pre-calibrate the NLF by taking repeated
shots of a scene containing a variety of colors and luminances, such as the Macbeth Color
Chart shown in Figure 10.3b (McCamy, Marcus, and Davidson 1976). (When estimating
the variance, be sure to throw away or downweight pixels with large gradients, as small
shifts between exposures will affect the sensed values at such pixels.) Unfortunately, the pre-
calibration process may have to be repeated for different exposure times and gain settings
because of the complex interactions occurring within the sensing system.

In practice, most computer vision algorithms, such as image denoising, edge detection,
and stereo matching, all benefit from at least a rudimentary estimate of the noise level. Barring
the ability to pre-calibrate the camera or to take repeated shots of the same scene, the simplest

2.3 The digital camera 77

approach is to look for regions of near-constant value and to estimate the noise variance in
such regions (Liu, Szeliski, Kang er al. 2008).

ADC resolution. The final step in the analog processing chain occurring within an imaging
sensor is the analog to digital conversion (ADC). While a variety of techniques can be used
to implement this process, the two quantities of interest are the resolution of this process
(how many bits it yields) and its noise level (how many of these bits are useful in practice).
For most cameras, the number of bits quoted (eight bits for compressed JPEG images and a
nominal 16 bits for the RAW formats provided by some DSLRs) exceeds the actual number
of usable bits. The best way to tell is to simply calibrate the noise of a given sensor, e.g.,
by taking repeated shots of the same scene and plotting the estimated noise as a function of
brightness (Exercise 2.6).

Digital post-processing. Once the irradiance values arriving at the sensor have been con-
verted to digital bits, most cameras perform a variety of digital signal processing (DSP)
operations to enhance the image before compressing and storing the pixel values. These in-
clude color filter array (CFA) demosaicing, white point setting, and mapping of the luminance
values through a gamma function to increase the perceived dynamic range of the signal. We
cover these topics in Section 2.3.2 but, before we do, we return to the topic of aliasing, which
was mentioned in connection with sensor array fill factors.

2.3.1 Sampling and aliasing

What happens when a field of light impinging on the image sensor falls onto the active sense
areas in the imaging chip? The photons arriving at each active cell are integrated and then
digitized. However, if the fill factor on the chip is small and the signal is not otherwise
band-limited, visually unpleasing aliasing can occur.

To explore the phenomenon of aliasing, let us first look at a one-dimensional signal (Fig-
ure 2.24), in which we have two sine waves, one at a frequency of f = 3/, and the other at
f = 5/4. If we sample these two signals at a frequency of f = 2, we see that they produce
the same samples (shown in black), and so we say that they are aliased.'* Why is this a bad
effect? In essence, we can no longer reconstruct the original signal, since we do not know
which of the two original frequencies was present.

In fact, Shannon’s Sampling Theorem shows that the minimum sampling (Oppenheim
and Schafer 1996; Oppenheim, Schafer, and Buck 1999) rate required to reconstruct a signal

14 An alias is an alternate name for someone, so the sampled signal corresponds to two different aliases.

78 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

AN AAY AN AT AV .
WARNVZRVAN VAN 57N N BNV AR ~A A

f=3/4 f=5/4

Figure 2.24 Aliasing of a one-dimensional signal: The blue sine wave at f = 3/4 and the
red sine wave at f = 5/4 have the same digital samples, when sampled at f = 2. Even after
convolution with a 100% fill factor box filter, the two signals, while no longer of the same
magnitude, are still aliased in the sense that the sampled red signal looks like an inverted
lower magnitude version of the blue signal. (The image on the right is scaled up for better
visibility. The actual sine magnitudes are 30% and —18% of their original values.)

from its instantaneous samples must be at least twice the highest frequency, '’

fs 2 2fmax- (2.102)

The maximum frequency in a signal is known as the Nyquist frequency and the inverse of the
minimum sampling frequency rs = 1/ f; is known as the Nyquist rate.

However, you may ask, since an imaging chip actually averages the light field over a
finite area, are the results on point sampling still applicable? Averaging over the sensor area
does tend to attenuate some of the higher frequencies. However, even if the fill factor is
100%, as in the right image of Figure 2.24, frequencies above the Nyquist limit (half the
sampling frequency) still produce an aliased signal, although with a smaller magnitude than
the corresponding band-limited signals.

A more convincing argument as to why aliasing is bad can be seen by downsampling
a signal using a poor quality filter such as a box (square) filter. Figure 2.25 shows a high-
frequency chirp image (so called because the frequencies increase over time), along with the
results of sampling it with a 25% fill-factor area sensor, a 100% fill-factor sensor, and a high-
quality 9-tap filter. Additional examples of downsampling (decimation) filters can be found
in Section 3.5.2 and Figure 3.30.

The best way to predict the amount of aliasing that an imaging system (or even an image
processing algorithm) will produce is to estimate the point spread function (PSF), which
represents the response of a particular pixel sensor to an ideal point light source. The PSF
is a combination (convolution) of the blur induced by the optical system (lens) and the finite

integration area of a chip sensor.'

15 The actual theorem states that fs must be at least twice the signal bandwidth but, since we are not dealing with
modulated signals such as radio waves during image capture, the maximum frequency suffices.

16 Imaging chips usually interpose an optical anti-aliasing filter just before the imaging chip to reduce or control
the amount of aliasing.

2.3 The digital camera 79

(a) (b)

(d)

Figure 2.25 Aliasing of a two-dimensional signal: (a) original full-resolution image; (b)
downsampled 4x with a 25% fill factor box filter; (c) downsampled 4x with a 100% fill
factor box filter; (d) downsampled 4x with a high-quality 9-tap filter. Notice how the higher
frequencies are aliased into visible frequencies with the lower quality filters, while the 9-tap
filter completely removes these higher frequencies.

If we know the blur function of the lens and the fill factor (sensor area shape and spacing)
for the imaging chip (plus, optionally, the response of the anti-aliasing filter), we can convolve
these (as described in Section 3.2) to obtain the PSF. Figure 2.26a shows the one-dimensional
cross-section of a PSF for a lens whose blur function is assumed to be a disc of a radius
equal to the pixel spacing s plus a sensing chip whose horizontal fill factor is 80%. Taking
the Fourier transform of this PSF (Section 3.4), we obtain the modulation transfer function
(MTF), from which we can estimate the amount of aliasing as the area of the Fourier magni-
tude outside the f < f, Nyquist frequency.'” If we de-focus the lens so that the blur function
has a radius of 2s (Figure 2.26c), we see that the amount of aliasing decreases significantly,
but so does the amount of image detail (frequencies closer to f = f;).

Under laboratory conditions, the PSF can be estimated (to pixel precision) by looking at a
point light source such as a pin hole in a black piece of cardboard lit from behind. However,
this PSF (the actual image of the pin hole) is only accurate to a pixel resolution and, while
it can model larger blur (such as blur caused by defocus), it cannot model the sub-pixel
shape of the PSF and predict the amount of aliasing. An alternative technique, described in
Section 10.1.4, is to look at a calibration pattern (e.g., one consisting of slanted step edges
(Reichenbach, Park, and Narayanswamy 1991; Williams and Burns 2001; Joshi, Szeliski, and
Kriegman 2008)) whose ideal appearance can be re-synthesized to sub-pixel precision.

In addition to occurring during image acquisition, aliasing can also be introduced in var-
ious image processing operations, such as resampling, upsampling, and downsampling. Sec-
tions 3.4 and 3.5.2 discuss these issues and show how careful selection of filters can reduce

17 The complex Fourier transform of the PSF is actually called the optical transfer function (OTF) (Williams
1999). Its magnitude is called the modulation transfer function (MTF) and its phase is called the phase transfer
function (PTF).

80 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

10

0.8

0.6

0.4

0.2

o

-14 -12 -1.0 -0.8 -0.6 -0.4 02 0.0 02 04 06 08 1.0 1.2 14 -2.0

0.5 10 15 2.0
()
19
0.8
0.6
0.4
0.2
86
-1’,4 »1‘,2 -1.0 -0‘,8 -0',6 -0.4 0”2 0.0 OTZ 0.4 0j6 OjB 10 1?2 114 -2‘.0 0.5 ltO 15 2.0
(©

Figure 2.26 Sample point spread functions (PSF): The diameter of the blur disc (blue) in
(a) is equal to half the pixel spacing, while the diameter in (c) is twice the pixel spacing. The
horizontal fill factor of the sensing chip is 80% and is shown in brown. The convolution of
these two kernels gives the point spread function, shown in green. The Fourier response of
the PSF (the MTF) is plotted in (b) and (d). The area above the Nyquist frequency where
aliasing occurs is shown in red.

the amount of aliasing that operations inject.

2.3.2 Color

In Section 2.2, we saw how lighting and surface reflections are functions of wavelength.
When the incoming light hits the imaging sensor, light from different parts of the spectrum is
somehow integrated into the discrete red, green, and blue (RGB) color values that we see in
a digital image. How does this process work and how can we analyze and manipulate color
values?

You probably recall from your childhood days the magical process of mixing paint colors
to obtain new ones. You may recall that blue+yellow makes green, red+blue makes purple,
and red+green makes brown. If you revisited this topic at a later age, you may have learned
that the proper subtractive primaries are actually cyan (a light blue-green), magenta (pink),
and yellow (Figure 2.27b), although black is also often used in four-color printing (CMYK).
(If you ever subsequently took any painting classes, you learned that colors can have even

2.3 The digital camera 81

(a) b)

Figure 2.27 Primary and secondary colors: (a) additive colors red, green, and blue can be
mixed to produce cyan, magenta, yellow, and white; (b) subtractive colors cyan, magenta,
and yellow can be mixed to produce red, green, blue, and black.

more fanciful names, such as alizarin crimson, cerulean blue, and chartreuse.) The subtractive
colors are called subtractive because pigments in the paint absorb certain wavelengths in the
color spectrum.

Later on, you may have learned about the additive primary colors (red, green, and blue)
and how they can be added (with a slide projector or on a computer monitor) to produce cyan,
magenta, yellow, white, and all the other colors we typically see on our TV sets and monitors
(Figure 2.27a).

Through what process is it possible for two different colors, such as red and green, to
interact to produce a third color like yellow? Are the wavelengths somehow mixed up to
produce a new wavelength?

You probably know that the correct answer has nothing to do with physically mixing
wavelengths. Instead, the existence of three primaries is a result of the tri-stimulus (or tri-
chromatic) nature of the human visual system, since we have three different kinds of cone,
each of which responds selectively to a different portion of the color spectrum (Glassner 1995;
Wyszecki and Stiles 2000; Fairchild 2005; Reinhard, Ward, Pattanaik et al. 2005; Livingstone
2008).'® Note that for machine vision applications, such as remote sensing and terrain clas-
sification, it is preferable to use many more wavelengths. Similarly, surveillance applications
can often benefit from sensing in the near-infrared (NIR) range.

CIE RGB and XYZ

To test and quantify the tri-chromatic theory of perception, we can attempt to reproduce all
monochromatic (single wavelength) colors as a mixture of three suitably chosen primaries.

18 See also Mark Fairchild’s Web page, http://www.cis.rit.edu/fairchild/WhyIsColor/books_links.html.

http://www.cis.rit.edu/fairchild/WhyIsColor/books_links.html

82 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0.4 1
0.3 A
0.2

0.1

0.0 frrrrrrerrrreem <
360 400 440480 520/560 600 640 680 720 760

-0.1 - 360 400 440 480 520 560 600 640 680 720 760

(a) (b)

Figure 2.28 Standard CIE color matching functions: (a) #()), g(\), b(\) color spectra
obtained from matching pure colors to the R=700.0nm, G=546.1nm, and B=435.8nm pri-
maries; (b) Z(\), ¥(A), Z(\) color matching functions, which are linear combinations of the

(F(A), g(A), b(X)) spectra.

(Pure wavelength light can be obtained using either a prism or specially manufactured color
filters.) In the 1930s, the Commission Internationale d’Eclairage (CIE) standardized the RGB
representation by performing such color matching experiments using the primary colors of
red (700.0nm wavelength), green (546.1nm), and blue (435.8nm).

Figure 2.28 shows the results of performing these experiments with a standard observer,
i.e., averaging perceptual results over a large number of subjects. You will notice that for
certain pure spectra in the blue—green range, a negative amount of red light has to be added,
i.e., a certain amount of red has to be added to the color being matched in order to get a color
match. These results also provided a simple explanation for the existence of metamers, which
are colors with different spectra that are perceptually indistinguishable. Note that two fabrics
or paint colors that are metamers under one light may no longer be so under different lighting.

Because of the problem associated with mixing negative light, the CIE also developed a
new color space called XYZ, which contains all of the pure spectral colors within its positive
octant. (It also maps the Y axis to the luminance, i.e., perceived relative brightness, and maps
pure white to a diagonal (equal-valued) vector.) The transformation from RGB to XYZ is

given by
X 1 0.49 0.31 0.20 R
= 017697 0.17697 0.81240 0.01063 G |. (2.103)
0.00 0.01 0.99 B

While the official definition of the CIE XYZ standard has the matrix normalized so that the
Y value corresponding to pure red is 1, a more commonly used form is to omit the leading

2.3 The digital camera 83

0.9
0.8
0.7
0.6
500
0.5

0.4

0.3

700 01 02 03 04 05 06 07 08
x

Figure 2.29 CIE chromaticity diagram, showing colors and their corresponding (z,y) val-
ues. Pure spectral colors are arranged around the outside of the curve.

fraction, so that the second row adds up to one, i.e., the RGB triplet (1, 1,1) maps to a Y value
of 1. Linearly blending the (7()), g()\), b(\)) curves in Figure 2.28a according to (2.103), we
obtain the resulting (Z(\), 5(A), Z(\)) curves shown in Figure 2.28b. Notice how all three
spectra (color matching functions) now have only positive values and how the §(\) curve
matches that of the luminance perceived by humans.

If we divide the XYZ values by the sum of X+Y+Z, we obtain the chromaticity coordi-

nates

X Y Z
= = A
X+v+2 YT Xvv+2 X+Y+2Z

which sum up to 1. The chromaticity coordinates discard the absolute intensity of a given

x (2.104)

color sample and just represent its pure color. If we sweep the monochromatic color A pa-
rameter in Figure 2.28b from A = 380nm to A = 800nm, we obtain the familiar chromaticity
diagram shown in Figure 2.29. This figure shows the (z,y) value for every color value per-
ceivable by most humans. (Of course, the CMYK reproduction process in this book does not
actually span the whole gamut of perceivable colors.) The outer curved rim represents where
all of the pure monochromatic color values map in (x, y) space, while the lower straight line,
which connects the two endpoints, is known as the purple line.

A convenient representation for color values, when we want to tease apart luminance
and chromaticity, is therefore Yxy (luminance plus the two most distinctive chrominance
components).

L*a*b* color space

While the XYZ color space has many convenient properties, including the ability to separate
luminance from chrominance, it does not actually predict how well humans perceive differ-

ences in color or luminance.

84 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Because the response of the human visual system is roughly logarithmic (we can perceive
relative luminance differences of about 1%), the CIE defined a non-linear re-mapping of the
XYZ space called L*a*b* (also sometimes called CIELAB), where differences in luminance
or chrominance are more perceptually uniform.'’

The L* component of lightness is defined as

L* = 116f <;/) , (2.105)

where Y,, is the luminance value for nominal white (Fairchild 2005) and

t1/3 t> 63
1= { t/(36%) +25/3 else, (2.106)

is a finite-slope approximation to the cube root with § = 6/29. The resulting 0. .. 100 scale
roughly measures equal amounts of lightness perceptibility.
In a similar fashion, the a* and b* components are defined as

“ XY (X . YV (2
w00 r(Z) ()] v -] (£) -1 (Z)]. e

where again, (X,,,Y,, Z,) is the measured white point. Figure 2.32i—k show the L*a*b*
representation for a sample color image.

Color cameras

While the preceding discussion tells us how we can uniquely describe the perceived tri-
stimulus description of any color (spectral distribution), it does not tell us how RGB still
and video cameras actually work. Do they just measure the amount of light at the nominal
wavelengths of red (700.0nm), green (546.1nm), and blue (435.8nm)? Do color monitors just
emit exactly these wavelengths and, if so, how can they emit negative red light to reproduce
colors in the cyan range?

In fact, the design of RGB video cameras has historically been based around the availabil-
ity of colored phosphors that go into television sets. When standard-definition color television
was invented (NTSC), a mapping was defined between the RGB values that would drive the
three color guns in the cathode ray tube (CRT) and the XYZ values that unambiguously de-
fine perceived color (this standard was called ITU-R BT.601). With the advent of HDTV and
newer monitors, a new standard called ITU-R BT.709 was created, which specifies the XYZ

19 Another perceptually motivated color space called L*u*v* was developed and standardized simultaneously
(Fairchild 2005).

2.3 The digital camera 85

values of each of the color primaries,

X 0.412453 0.357580 0.180423 R7o9
Y | = | 0212671 0.715160 0.072169 Grog | - (2.108)
A 0.019334 0.119193 0.950227 Bro9

In practice, each color camera integrates light according to the spectral response function
of its red, green, and blue sensors,

R

/ LN Sr(V)dA,

G / L) Se(VdA, (2.109)

B - /L(/\)SB(A)dA,

where L()) is the incoming spectrum of light at a given pixel and {Sg()), S¢(A), Sp(A)}
are the red, green, and blue spectral sensitivities of the corresponding sensors.

Can we tell what spectral sensitivities the cameras actually have? Unless the camera
manufacturer provides us with this data or we observe the response of the camera to a whole
spectrum of monochromatic lights, these sensitivities are not specified by a standard such as
BT.709. Instead, all that matters is that the tri-stimulus values for a given color produce the
specified RGB values. The manufacturer is free to use sensors with sensitivities that do not
match the standard XYZ definitions, so long as they can later be converted (through a linear
transform) to the standard colors.

Similarly, while TV and computer monitors are supposed to produce RGB values as spec-
ified by Equation (2.108), there is no reason that they cannot use digital logic to transform the
incoming RGB values into different signals to drive each of the color channels. Properly cal-
ibrated monitors make this information available to software applications that perform color
management, so that colors in real life, on the screen, and on the printer all match as closely
as possible.

Color filter arrays

While early color TV cameras used three vidicons (tubes) to perform their sensing and later
cameras used three separate RGB sensing chips, most of today’s digital still and video cam-
eras cameras use a color filter array (CFA), where alternating sensors are covered by different
colored filters.?’

20° A newer chip design by Foveon (http://www.foveon.com) stacks the red, green, and blue sensors beneath each
other, but it has not yet gained widespread adoption.

http://www.foveon.com

86 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

G R G R rGb | Rgb | rGb | Rgb

B G B G rgB | rGb | rgB | rGb

G R G R rGb | Rgb | rGb | Rgb

B G B G rgB | rGb | rgB | rGb
(@) (b)

Figure 2.30 Bayer RGB pattern: (a) color filter array layout; (b) interpolated pixel values,
with unknown (guessed) values shown as lower case.

The most commonly used pattern in color cameras today is the Bayer pattern (Bayer
1976), which places green filters over half of the sensors (in a checkerboard pattern), and red
and blue filters over the remaining ones (Figure 2.30). The reason that there are twice as many
green filters as red and blue is because the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail in luminance
than in chrominance (a fact that is exploited in color image compression—see Section 2.3.3).
The process of interpolating the missing color values so that we have valid RGB values for
all the pixels is known as demosaicing and is covered in detail in Section 10.3.1.

Similarly, color LCD monitors typically use alternating stripes of red, green, and blue
filters placed in front of each liquid crystal active area to simulate the experience of a full color
display. As before, because the visual system has higher resolution (acuity) in luminance than
chrominance, it is possible to digitally pre-filter RGB (and monochrome) images to enhance
the perception of crispness (Betrisey, Blinn, Dresevic et al. 2000; Platt 2000).

Color balance

Before encoding the sensed RGB values, most cameras perform some kind of color balancing
operation in an attempt to move the white point of a given image closer to pure white (equal
RGB values). If the color system and the illumination are the same (the BT.709 system uses
the daylight illuminant Dgs as its reference white), the change may be minimal. However,
if the illuminant is strongly colored, such as incandescent indoor lighting (which generally
results in a yellow or orange hue), the compensation can be quite significant.

A simple way to perform color correction is to multiply each of the RGB values by a
different factor (i.e., to apply a diagonal matrix transform to the RGB color space). More
complicated transforms, which are sometimes the result of mapping to XYZ space and back,

2.3 The digital camera 87

s A
Y Y
visible
noise

Y=Y

»
>»
’

quantization Y
noise

Figure 2.31 Gamma compression: (a) The relationship between the input signal luminance
Y and the transmitted signal Y” is given by Y/ = Y'1/7. (b) At the receiver, the signal Y” is

exponentiated by the factor v, Y = Y7, Noise introduced during transmission is squashed in
the dark regions, which corresponds to the more noise-sensitive region of the visual system.

actually perform a color twist, i.e., they use a general 3 x 3 color transform matrix.>' Exer-
cise 2.9 has you explore some of these issues.

Gamma

In the early days of black and white television, the phosphors in the CRT used to display
the TV signal responded non-linearly to their input voltage. The relationship between the
voltage and the resulting brightness was characterized by a number called gamma (), since

the formula was roughly
B=V7, (2.110)

with a v of about 2.2. To compensate for this effect, the electronics in the TV camera would
pre-map the sensed luminance Y through an inverse gamma,

Y =Y~ 2.111)

with a typical value of = = 0.45.

The mapping of the signal through this non-linearity before transmission had a beneficial
side effect: noise added during transmission (remember, these were analog days!) would be
reduced (after applying the gamma at the receiver) in the darker regions of the signal where
it was more visible (Figure 2.31).%2 (Remember that our visual system is roughly sensitive to
relative differences in luminance.)

21 Those of you old enough to remember the early days of color television will naturally think of the hue adjustment
knob on the television set, which could produce truly bizarre results.

22 A related technique called companding was the basis of the Dolby noise reduction systems used with audio
tapes.

88 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

When color television was invented, it was decided to separately pass the red, green, and
blue signals through the same gamma non-linearity before combining them for encoding.
Today, even though we no longer have analog noise in our transmission systems, signals are
still quantized during compression (see Section 2.3.3), so applying inverse gamma to sensed
values is still useful.

Unfortunately, for both computer vision and computer graphics, the presence of gamma
in images is often problematic. For example, the proper simulation of radiometric phenomena
such as shading (see Section 2.2 and Equation (2.87)) occurs in a linear radiance space. Once
all of the computations have been performed, the appropriate gamma should be applied before
display. Unfortunately, many computer graphics systems (such as shading models) operate
directly on RGB values and display these values directly. (Fortunately, newer color imaging
standards such as the 16-bit scRGB use a linear space, which makes this less of a problem
(Glassner 1995).)

In computer vision, the situation can be even more daunting. The accurate determination
of surface normals, using a technique such as photometric stereo (Section 12.1.1) or even a
simpler operation such as accurate image deblurring, require that the measurements be in a
linear space of intensities. Therefore, it is imperative when performing detailed quantitative
computations such as these to first undo the gamma and the per-image color re-balancing
in the sensed color values. Chakrabarti, Scharstein, and Zickler (2009) develop a sophisti-
cated 24-parameter model that is a good match to the processing performed by today’s digital
cameras; they also provide a database of color images you can use for your own testing.?

For other vision applications, however, such as feature detection or the matching of sig-
nals in stereo and motion estimation, this linearization step is often not necessary. In fact,
determining whether it is necessary to undo gamma can take some careful thinking, e.g., in
the case of compensating for exposure variations in image stitching (see Exercise 2.7).

If all of these processing steps sound confusing to model, they are. Exercise 2.10 has you
try to tease apart some of these phenomena using empirical investigation, i.e., taking pictures
of color charts and comparing the RAW and JPEG compressed color values.

Other color spaces

While RGB and XYZ are the primary color spaces used to describe the spectral content (and
hence tri-stimulus response) of color signals, a variety of other representations have been
developed both in video and still image coding and in computer graphics.

The earliest color representation developed for video transmission was the YIQ standard
developed for NTSC video in North America and the closely related YUV standard developed
for PAL in Europe. In both of these cases, it was desired to have a luma channel Y (so called

23 http://vision.middlebury.edu/color/.

http://vision.middlebury.edu/color/

2.3 The digital camera 89

since it only roughly mimics true luminance) that would be comparable to the regular black-
and-white TV signal, along with two lower frequency chroma channels.

In both systems, the Y signal (or more appropriately, the Y’ luma signal since it is gamma
compressed) is obtained from

Yio1 = 0.299R’ + 0.587G’ + 0.114B, (2.112)

where R’G’B’ is the triplet of gamma-compressed color components. When using the newer
color definitions for HDTV in BT.709, the formula is

Y799 = 0.2125R’ + 0.7154G’ + 0.0721B’". (2.113)
The UV components are derived from scaled versions of (B'—Y"’) and (R’ —Y"), namely,
U=0492111(B' —Y’) and V = 0.877283(R' — Y"), 2.114)

whereas the IQ components are the UV components rotated through an angle of 33°. In
composite (NTSC and PAL) video, the chroma signals were then low-pass filtered horizon-
tally before being modulated and superimposed on top of the Y’ luma signal. Backward
compatibility was achieved by having older black-and-white TV sets effectively ignore the
high-frequency chroma signal (because of slow electronics) or, at worst, superimposing it as
a high-frequency pattern on top of the main signal.

While these conversions were important in the early days of computer vision, when frame
grabbers would directly digitize the composite TV signal, today all digital video and still
image compression standards are based on the newer YCbCr conversion. YCbCr is closely
related to YUV (the C}, and C'. signals carry the blue and red color difference signals and have
more useful mnemonics than UV) but uses different scale factors to fit within the eight-bit
range available with digital signals.

For video, the Y’ signal is re-scaled to fit within the [16...235] range of values, while
the Cb and Cr signals are scaled to fit within [16. .. 240] (Gomes and Velho 1997; Fairchild
2005). For still images, the JPEG standard uses the full eight-bit range with no reserved

values,
Y’ 0.299 0.587 0.114 R 0
Cy | = | —0.168736 —0.331264 0.5 G |+ 128 |, (2.115)
C, 0.5 —0.418688 —0.081312 B’ 128

where the R’G’B’ values are the eight-bit gamma-compressed color components (i.e., the
actual RGB values we obtain when we open up or display a JPEG image). For most appli-
cations, this formula is not that important, since your image reading software will directly

90 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

provide you with the eight-bit gamma-compressed R’G’B’ values. However, if you are trying
to do careful image deblocking (Exercise 3.30), this information may be useful.

Another color space you may come across is hue, saturation, value (HSV), which is a pro-
jection of the RGB color cube onto a non-linear chroma angle, a radial saturation percentage,
and a luminance-inspired value. In more detail, value is defined as either the mean or maxi-
mum color value, saturation is defined as scaled distance from the diagonal, and hue is defined
as the direction around a color wheel (the exact formulas are described by Hall (1989); Foley,
van Dam, Feiner et al. (1995)). Such a decomposition is quite natural in graphics applications
such as color picking (it approximates the Munsell chart for color description). Figure 2.321-
n shows an HSV representation of a sample color image, where saturation is encoded using a
gray scale (saturated = darker) and hue is depicted as a color.

If you want your computer vision algorithm to only affect the value (luminance) of an
image and not its saturation or hue, a simpler solution is to use either the Y xy (luminance +
chromaticity) coordinates defined in (2.104) or the even simpler color ratios,

__ R G ,__ B
" R+G+B YT R1G+B ' R+G+B

(2.116)

(Figure 2.32e—h). After manipulating the luma (2.112), e.g., through the process of histogram
equalization (Section 3.1.4), you can multiply each color ratio by the ratio of the new to old
luma to obtain an adjusted RGB triplet.

While all of these color systems may sound confusing, in the end, it often may not mat-
ter that much which one you use. Poynton, in his Color FAQ, http://www.poynton.com/
ColorFAQ.html, notes that the perceptually motivated L*a*b* system is qualitatively similar
to the gamma-compressed R’G’B’ system we mostly deal with, since both have a fractional
power scaling (which approximates a logarithmic response) between the actual intensity val-
ues and the numbers being manipulated. As in all cases, think carefully about what you are
trying to accomplish before deciding on a technique to use.?*

2.3.3 Compression

The last stage in a camera’s processing pipeline is usually some form of image compression
(unless you are using a lossless compression scheme such as camera RAW or PNG).

All color video and image compression algorithms start by converting the signal into
YCbCr (or some closely related variant), so that they can compress the luminance signal with
higher fidelity than the chrominance signal. (Recall that the human visual system has poorer

24 1f you are at a loss for questions at a conference, you can always ask why the speaker did not use a perceptual
color space, such as L*a*b*. Conversely, if they did use L*a*b*, you can ask if they have any concrete evidence that
this works better than regular colors.

http://www.poynton.com/ColorFAQ.html
http://www.poynton.com/ColorFAQ.html

2.3 The digital camera 91

Y M~k

. R K
M & e BNk

OH (m) S () Vv

Figure 2.32 Color space transformations: (a—d) RGB; (e-h) rgb. (i-k) L*a*b*; (I-n) HSV.
Note that the rgb, L*a*b*, and HSV values are all re-scaled to fit the dynamic range of the
printed page.

frequency response to color than to luminance changes.) In video, it is common to subsam-
ple Cb and Cr by a factor of two horizontally; with still images (JPEG), the subsampling
(averaging) occurs both horizontally and vertically.

Once the luminance and chrominance images have been appropriately subsampled and
separated into individual images, they are then passed to a block transform stage. The most
common technique used here is the discrete cosine transform (DCT), which is a real-valued
variant of the discrete Fourier transform (DFT) (see Section 3.4.3). The DCT is a reasonable
approximation to the Karhunen—Loeve or eigenvalue decomposition of natural image patches,
i.e., the decomposition that simultaneously packs the most energy into the first coefficients
and diagonalizes the joint covariance matrix among the pixels (makes transform coefficients

92 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 2.33 Image compressed with JPEG at three quality settings. Note how the amount
of block artifact and high-frequency aliasing (“mosquito noise”) increases from left to right.

statistically independent). Both MPEG and JPEG use 8 x 8 DCT transforms (Wallace 1991;
Le Gall 1991), although newer variants use smaller 4 x 4 blocks or alternative transformations,
such as wavelets (Taubman and Marcellin 2002) and lapped transforms (Malvar 1990, 1998,
2000) are now used.

After transform coding, the coefficient values are quantized into a set of small integer
values that can be coded using a variable bit length scheme such as a Huffman code or an
arithmetic code (Wallace 1991). (The DC (lowest frequency) coefficients are also adaptively
predicted from the previous block’s DC values. The term “DC” comes from “direct current”,
i.e., the non-sinusoidal or non-alternating part of a signal.) The step size in the quantization
is the main variable controlled by the guality setting on the JPEG file (Figure 2.33).

With video, it is also usual to perform block-based motion compensation, i.e., to encode
the difference between each block and a predicted set of pixel values obtained from a shifted
block in the previous frame. (The exception is the motion-JPEG scheme used in older DV
camcorders, which is nothing more than a series of individually JPEG compressed image
frames.) While basic MPEG uses 16 x 16 motion compensation blocks with integer motion
values (Le Gall 1991), newer standards use adaptively sized block, sub-pixel motions, and
the ability to reference blocks from older frames. In order to recover more gracefully from
failures and to allow for random access to the video stream, predicted P frames are interleaved
among independently coded I frames. (Bi-directional B frames are also sometimes used.)

The quality of a compression algorithm is usually reported using its peak signal-to-noise
ratio (PSNR), which is derived from the average mean square error,

MSE:EE:p@Q—H@r, @.117)

n
Z

where I(x) is the original uncompressed image and I (x) is its compressed counterpart, or
equivalently, the root mean square error (RMS error), which is defined as

RMS = VMSE. (2.118)

2.4 Additional reading 93

The PSNR is defined as

2

I Imax
PSNR = 10log,,]\FEXE = 201log;, RMS’ (2.119)

where [,,,x is the maximum signal extent, e.g., 255 for eight-bit images.

While this is just a high-level sketch of how image compression works, it is useful to
understand so that the artifacts introduced by such techniques can be compensated for in
various computer vision applications.

2.4 Additional reading

As we mentioned at the beginning of this chapter, it provides but a brief summary of a very
rich and deep set of topics, traditionally covered in a number of separate fields.

A more thorough introduction to the geometry of points, lines, planes, and projections
can be found in textbooks on multi-view geometry (Hartley and Zisserman 2004; Faugeras
and Luong 2001) and computer graphics (Foley, van Dam, Feiner et al. 1995; Watt 1995;
OpenGL-ARB 1997). Topics covered in more depth include higher-order primitives such as
quadrics, conics, and cubics, as well as three-view and multi-view geometry.

The image formation (synthesis) process is traditionally taught as part of a computer
graphics curriculum (Foley, van Dam, Feiner er al. 1995; Glassner 1995; Watt 1995; Shirley
2005) but it is also studied in physics-based computer vision (Wolff, Shafer, and Healey
1992a).

The behavior of camera lens systems is studied in optics (Moller 1988; Hecht 2001; Ray
2002).

Some good books on color theory have been written by Healey and Shafer (1992); Wyszecki
and Stiles (2000); Fairchild (2005), with Livingstone (2008) providing a more fun and infor-
mal introduction to the topic of color perception. Mark Fairchild’s page of color books and
links? lists many other sources.

Topics relating to sampling and aliasing are covered in textbooks on signal and image
processing (Crane 1997; Jahne 1997; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999; Pratt 2007; Russ 2007; Burger and Burge 2008; Gonzales and Woods 2008).

2.5 Exercises

A note to students: This chapter is relatively light on exercises since it contains mostly
background material and not that many usable techniques. If you really want to understand

25 http://www.cis.rit.edu/fairchild/WhyIsColor/books_links.html.

http://www.cis.rit.edu/fairchild/WhyIsColor/books_links.html

94 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

multi-view geometry in a thorough way, I encourage you to read and do the exercises provided
by Hartley and Zisserman (2004). Similarly, if you want some exercises related to the image
formation process, Glassner’s (1995) book is full of challenging problems.

Ex 2.1: Least squares intersection point and line fitting—advanced Equation (2.4) shows
how the intersection of two 2D lines can be expressed as their cross product, assuming the
lines are expressed as homogeneous coordinates.

1. If you are given more than two lines and want to find a point & that minimizes the sum
of squared distances to each line,

D= Z(d’c)2, (2.120)

%

how can you compute this quantity? (Hint: Write the dot product as #T1; and turn the
squared quantity into a quadratic form, &* A&.)

2. To fit a line to a bunch of points, you can compute the centroid (mean) of the points
as well as the covariance matrix of the points around this mean. Show that the line
passing through the centroid along the major axis of the covariance ellipsoid (largest
eigenvector) minimizes the sum of squared distances to the points.

3. These two approaches are fundamentally different, even though projective duality tells
us that points and lines are interchangeable. Why are these two algorithms so appar-
ently different? Are they actually minimizing different objectives?

Ex 2.2: 2D transform editor Write a program that lets you interactively create a set of
rectangles and then modify their “pose” (2D transform). You should implement the following
steps:

1. Open an empty window (‘“‘canvas”).
2. Shift drag (rubber-band) to create a new rectangle.

3. Select the deformation mode (motion model): translation, rigid, similarity, affine, or
perspective.

4. Drag any corner of the outline to change its transformation.

This exercise should be built on a set of pixel coordinate and transformation classes, either
implemented by yourself or from a software library. Persistence of the created representation
(save and load) should also be supported (for each rectangle, save its transformation).

2.5 Exercises 95

Ex 2.3: 3D viewer Write a simple viewer for 3D points, lines, and polygons. Import a set
of point and line commands (primitives) as well as a viewing transform. Interactively modify
the object or camera transform. This viewer can be an extension of the one you created in
(Exercise 2.2). Simply replace the viewing transformations with their 3D equivalents.
(Optional) Add a z-buffer to do hidden surface removal for polygons.
(Optional) Use a 3D drawing package and just write the viewer control.

Ex 2.4: Focus distance and depth of field Figure out how the focus distance and depth of
field indicators on a lens are determined.

1. Compute and plot the focus distance z, as a function of the distance traveled from the
focal length Az; = f — z; for a lens of focal length f (say, 100mm). Does this explain
the hyperbolic progression of focus distances you see on a typical lens (Figure 2.20)?

2. Compute the depth of field (minimum and maximum focus distances) for a given focus
setting z, as a function of the circle of confusion diameter ¢ (make it a fraction of
the sensor width), the focal length f, and the f-stop number N (which relates to the
aperture diameter d). Does this explain the usual depth of field markings on a lens that
bracket the in-focus marker, as in Figure 2.20a?

3. Now consider a zoom lens with a varying focal length f. Assume that as you zoom,
the lens stays in focus, i.e., the distance from the rear nodal point to the sensor plane
z; adjusts itself automatically for a fixed focus distance z,. How do the depth of field
indicators vary as a function of focal length? Can you reproduce a two-dimensional
plot that mimics the curved depth of field lines seen on the lens in Figure 2.20b?

Ex 2.5: F-numbers and shutter speeds List the common f-numbers and shutter speeds
that your camera provides. On older model SLRs, they are visible on the lens and shut-
ter speed dials. On newer cameras, you have to look at the electronic viewfinder (or LCD
screen/indicator) as you manually adjust exposures.

1. Do these form geometric progressions; if so, what are the ratios? How do these relate
to exposure values (EVs)?

2. If your camera has shutter speeds of g5 and 13z, do you think that these two speeds are
is}

exactly a factor of two apart or a factor of 125/60 = 2.083 apart?

3. How accurate do you think these numbers are? Can you devise some way to measure
exactly how the aperture affects how much light reaches the sensor and what the exact
exposure times actually are?

96 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Ex 2.6: Noise level calibration Estimate the amount of noise in your camera by taking re-
peated shots of a scene with the camera mounted on a tripod. (Purchasing a remote shutter
release is a good investment if you own a DSLR.) Alternatively, take a scene with constant
color regions (such as a color checker chart) and estimate the variance by fitting a smooth
function to each color region and then taking differences from the predicted function.

1. Plot your estimated variance as a function of level for each of your color channels
separately.

2. Change the ISO setting on your camera; if you cannot do that, reduce the overall light
in your scene (turn off lights, draw the curtains, wait until dusk). Does the amount of
noise vary a lot with ISO/gain?

3. Compare your camera to another one at a different price point or year of make. Is
there evidence to suggest that “you get what you pay for”? Does the quality of digital
cameras seem to be improving over time?

Ex 2.7: Gamma correction in image stitching Here’s a relatively simple puzzle. Assume
you are given two images that are part of a panorama that you want to stitch (see Chapter 9).
The two images were taken with different exposures, so you want to adjust the RGB values
so that they match along the seam line. Is it necessary to undo the gamma in the color values
in order to achieve this?

Ex 2.8: Skin color detection Devise a simple skin color detector (Forsyth and Fleck 1999;
Jones and Rehg 2001; Vezhnevets, Sazonov, and Andreeva 2003; Kakumanu, Makrogiannis,
and Bourbakis 2007) based on chromaticity or other color properties.

1. Take a variety of photographs of people and calculate the xy chromaticity values for
each pixel.

2. Crop the photos or otherwise indicate with a painting tool which pixels are likely to be
skin (e.g. face and arms).

3. Calculate a color (chromaticity) distribution for these pixels. You can use something as
simple as a mean and covariance measure or as complicated as a mean-shift segmenta-
tion algorithm (see Section 5.3.2). You can optionally use non-skin pixels to model the
background distribution.

4. Use your computed distribution to find the skin regions in an image. One easy way to
visualize this is to paint all non-skin pixels a given color, such as white or black.

5. How sensitive is your algorithm to color balance (scene lighting)?

2.5 Exercises 97

6. Does a simpler chromaticity measurement, such as a color ratio (2.116), work just as
well?

Ex 2.9: White point balancing—tricky A common (in-camera or post-processing) tech-
nique for performing white point adjustment is to take a picture of a white piece of paper and
to adjust the RGB values of an image to make this a neutral color.

1. Describe how you would adjust the RGB values in an image given a sample “white
color” of (R, G4, By,) to make this color neutral (without changing the exposure too
much).

2. Does your transformation involve a simple (per-channel) scaling of the RGB values or
do you need a full 3 x 3 color twist matrix (or something else)?

3. Convert your RGB values to XYZ. Does the appropriate correction now only depend
on the XY (or xy) values? If so, when you convert back to RGB space, do you need a
full 3 x 3 color twist matrix to achieve the same effect?

4. If you used pure diagonal scaling in the direct RGB mode but end up with a twist if you
work in XYZ space, how do you explain this apparent dichotomy? Which approach is
correct? (Or is it possible that neither approach is actually correct?)

If you want to find out what your camera actually does, continue on to the next exercise.

Ex 2.10: In-camera color processing—challenging If your camera supports a RAW pixel
mode, take a pair of RAW and JPEG images, and see if you can infer what the camera is doing
when it converts the RAW pixel values to the final color-corrected and gamma-compressed
eight-bit JPEG pixel values.

1. Deduce the pattern in your color filter array from the correspondence between co-
located RAW and color-mapped pixel values. Use a color checker chart at this stage
if it makes your life easier. You may find it helpful to split the RAW image into four
separate images (subsampling even and odd columns and rows) and to treat each of
these new images as a “virtual” sensor.

2. Evaluate the quality of the demosaicing algorithm by taking pictures of challenging
scenes which contain strong color edges (such as those shown in in Section 10.3.1).

3. If you can take the same exact picture after changing the color balance values in your
camera, compare how these settings affect this processing.

4. Compare your results against those presented by Chakrabarti, Scharstein, and Zickler
(2009) or use the data available in their database of color images.*®

26 http://vision.middlebury.edu/color/.

http://vision.middlebury.edu/color/

98

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

3.1

32

33

34

35

3.6

3.7

3.8
39

Chapter 3
Image processing

Pointoperators 101
3.1.1 Pixeltransforms L 103
3.1.2 Colortransforms L 104
3.1.3 Compositing and matting 105
3.1.4 Histogram equalization 107
3.1.5 Application: Tonal adjustment 111
Linear filtering e 111
3.2.1 Separablefiltering 115
3.2.2 Examples of linear filtering oL 0oL 117
3.2.3 Band-pass and steerable filters Lo, 118
More neighborhood operators oL 122
3.3.1 Non-linear filtering L 122
3.3.2 Morphology e 127
333 Distance transforms Lo 129
3.3.4 Connected COMPONeNtS v v v vttt e 131
Fourier transforms L 132
3.4.1 Fourier transform pairs L 136
3.4.2 Two-dimensional Fourier transforms 140
343 Wienerfiltering 140
3.4.4 Application: Sharpening, blur, and noise removal 144
Pyramids and wavelets 144
351 Interpolation e 145
352 Decimation e e e 148
3.5.3 Multi-resolution representationso e L. 150
354 Wavelets o L e 154
3.5.5 Application: Imageblending L. 160
Geometric transformations oL o 162
3.6.1 Parametric transformations 163
3.6.2 Mesh-based warping 170
3.6.3 Application: Feature-based morphing 173
Global optimization e 174
3.7.1 Regularization L 174
3,72 Markovrandomfields Lo 180
3.7.3 Application: Image restoration 192
Additional reading oL 192
EXercises e e e 194

100 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 3.1 Some common image processing operations: (a) original image; (b) increased
contrast; (c) change in hue; (d) “posterized” (quantized colors); (e) blurred; (f) rotated.

3.1 Point operators 101

Now that we have seen how images are formed through the interaction of 3D scene elements,
lighting, and camera optics and sensors, let us look at the first stage in most computer vision
applications, namely the use of image processing to preprocess the image and convert it into
a form suitable for further analysis. Examples of such operations include exposure correction
and color balancing, the reduction of image noise, increasing sharpness, or straightening the
image by rotating it (Figure 3.1). While some may consider image processing to be outside
the purview of computer vision, most computer vision applications, such as computational
photography and even recognition, require care in designing the image processing stages in
order to achieve acceptable results.

In this chapter, we review standard image processing operators that map pixel values from
one image to another. Image processing is often taught in electrical engineering departments
as a follow-on course to an introductory course in signal processing (Oppenheim and Schafer
1996; Oppenheim, Schafer, and Buck 1999). There are several popular textbooks for image
processing (Crane 1997; Gomes and Velho 1997; Jihne 1997; Pratt 2007; Russ 2007; Burger
and Burge 2008; Gonzales and Woods 2008).

We begin this chapter with the simplest kind of image transforms, namely those that
manipulate each pixel independently of its neighbors (Section 3.1). Such transforms are of-
ten called point operators or point processes. Next, we examine neighborhood (area-based)
operators, where each new pixel’s value depends on a small number of neighboring input
values (Sections 3.2 and 3.3). A convenient tool to analyze (and sometimes accelerate) such
neighborhood operations is the Fourier Transform, which we cover in Section 3.4. Neighbor-
hood operators can be cascaded to form image pyramids and wavelets, which are useful for
analyzing images at a variety of resolutions (scales) and for accelerating certain operations
(Section 3.5). Another important class of global operators are geometric transformations,
such as rotations, shears, and perspective deformations (Section 3.6). Finally, we introduce
global optimization approaches to image processing, which involve the minimization of an
energy functional or, equivalently, optimal estimation using Bayesian Markov random field
models (Section 3.7).

3.1 Point operators

The simplest kinds of image processing transforms are point operators, where each output
pixel’s value depends on only the corresponding input pixel value (plus, potentially, some
globally collected information or parameters). Examples of such operators include brightness
and contrast adjustments (Figure 3.2) as well as color correction and transformations. In the
image processing literature, such operations are also known as point processes (Crane 1997).

We begin this section with a quick review of simple point operators such as brightness

102 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

peak=034 (1200} ,061 (1190} , 006 (1845) peak=050 (1195} ,077

peak=030(1145) 067 (1171) ,254(2358)

Figure 3.2 Some local image processing operations: (a) original image along with its three
color (per-channel) histograms; (b) brightness increased (additive offset, b = 16); (c) contrast
increased (multiplicative gain, a = 1.1); (d) gamma (partially) linearized (v = 1.2); (e) full
histogram equalization; (f) partial histogram equalization.

3.1 Point operators 103

(©) (d

Figure 3.3 Visualizing image data: (a) original image; (b) cropped portion and scanline plot
using an image inspection tool; (c) grid of numbers; (d) surface plot. For figures (c)—(d), the
image was first converted to grayscale.

scaling and image addition. Next, we discuss how colors in images can be manipulated.
We then present image compositing and matting operations, which play an important role
in computational photography (Chapter 10) and computer graphics applications. Finally, we
describe the more global process of histogram equalization. We close with an example appli-
cation that manipulates fonal values (exposure and contrast) to improve image appearance.

3.1.1 Pixel transforms

A general image processing operator is a function that takes one or more input images and
produces an output image. In the continuous domain, this can be denoted as

g(x) = h(f(@)) or g(x) = h(fo(), ..., fn(®)), 3.1

where is in the D-dimensional domain of the functions (usually D = 2 for images) and the
functions f and g operate over some range, which can either be scalar or vector-valued, e.g.,
for color images or 2D motion. For discrete (sampled) images, the domain consists of a finite
number of pixel locations, x = (i, j), and we can write

9(i,5) = h(f (@ 5))- (32

Figure 3.3 shows how an image can be represented either by its color (appearance), as a grid
of numbers, or as a two-dimensional function (surface plot).
Two commonly used point processes are multiplication and addition with a constant,

glx) =af(x)+0. (3.3)

The parameters a > 0 and b are often called the gain and bias parameters; sometimes these
parameters are said to control contrast and brightness, respectively (Figures 3.2b—c).! The

! An image’s luminance characteristics can also be summarized by its key (average luminanance) and range
(Kopf, Uyttendaele, Deussen et al. 2007).

104 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

bias and gain parameters can also be spatially varying,
9(x) = a(x)f(x) + b(x), (3.4)

e.g., when simulating the graded density filter used by photographers to selectively darken
the sky or when modeling vignetting in an optical system.

Multiplicative gain (both global and spatially varying) is a linear operation, since it obeys
the superposition principle,

h(fo+ f1) = h(fo) + h(f1)- (3.5)

(We will have more to say about linear shift invariant operators in Section 3.2.) Operators
such as image squaring (which is often used to get a local estimate of the energy in a band-
pass filtered signal, see Section 3.5) are not linear.

Another commonly used dyadic (two-input) operator is the linear blend operator,

9(x) = (1 - a)fo(x) + afi(x). (3.6)

By varying o from 0 — 1, this operator can be used to perform a temporal cross-dissolve
between two images or videos, as seen in slide shows and film production, or as a component
of image morphing algorithms (Section 3.6.3).

One highly used non-linear transform that is often applied to images before further pro-
cessing is gamma correction, which is used to remove the non-linear mapping between input
radiance and quantized pixel values (Section 2.3.2). To invert the gamma mapping applied
by the sensor, we can use

g(x) = [f(x)]"/", 3.7)

where a gamma value of v ~ 2.2 is a reasonable fit for most digital cameras.

3.1.2 Color transforms

While color images can be treated as arbitrary vector-valued functions or collections of inde-
pendent bands, it usually makes sense to think about them as highly correlated signals with
strong connections to the image formation process (Section 2.2), sensor design (Section 2.3),
and human perception (Section 2.3.2). Consider, for example, brightening a picture by adding
a constant value to all three channels, as shown in Figure 3.2b. Can you tell if this achieves the
desired effect of making the image look brighter? Can you see any undesirable side-effects
or artifacts?

In fact, adding the same value to each color channel not only increases the apparent in-
tensity of each pixel, it can also affect the pixel’s hue and saturation. How can we define and
manipulate such quantities in order to achieve the desired perceptual effects?

3.1 Point operators 105

(b) (d)

Figure 3.4 Image matting and compositing (Chuang, Curless, Salesin ef al. 2001) (©) 2001
IEEE: (a) source image; (b) extracted foreground object F'; (c) alpha matte o shown in
grayscale; (d) new composite C.

As discussed in Section 2.3.2, chromaticity coordinates (2.104) or even simpler color ra-
tios (2.116) can first be computed and then used after manipulating (e.g., brightening) the
luminance Y to re-compute a valid RGB image with the same hue and saturation. Figure
2.32g—i shows some color ratio images multiplied by the middle gray value for better visual-
ization.

Similarly, color balancing (e.g., to compensate for incandescent lighting) can be per-
formed either by multiplying each channel with a different scale factor or by the more com-
plex process of mapping to XYZ color space, changing the nominal white point, and mapping
back to RGB, which can be written down using a linear 3 X 3 color twist transform matrix.
Exercises 2.9 and 3.1 have you explore some of these issues.

Another fun project, best attempted after you have mastered the rest of the material in
this chapter, is to take a picture with a rainbow in it and enhance the strength of the rainbow
(Exercise 3.29).

3.1.3 Compositing and matting

In many photo editing and visual effects applications, it is often desirable to cut a foreground
object out of one scene and put it on top of a different background (Figure 3.4). The process
of extracting the object from the original image is often called matting (Smith and Blinn
1996), while the process of inserting it into another image (without visible artifacts) is called
compositing (Porter and Duff 1984; Blinn 1994a).

The intermediate representation used for the foreground object between these two stages
is called an alpha-matted color image (Figure 3.4b—c). In addition to the three color RGB
channels, an alpha-matted image contains a fourth alpha channel « (or A) that describes the
relative amount of opacity or fractional coverage at each pixel (Figures 3.4c and 3.5b). The
opacity is the opposite of the transparency. Pixels within the object are fully opaque (a = 1),
while pixels fully outside the object are transparent (o = 0). Pixels on the boundary of the
object vary smoothly between these two extremes, which hides the perceptual visible jaggies

106 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

C
(b) () (d)

Figure 3.5 Compositing equation C = (1 — «)B + «F. The images are taken from a
close-up of the region of the hair in the upper right part of the lion in Figure 3.4.

that occur if only binary opacities are used.

To composite a new (or foreground) image on top of an old (background) image, the over
operator, first proposed by Porter and Duff (1984) and then studied extensively by Blinn
(1994a; 1994b), is used,

C=(1-a)B+aF. (3.8)

This operator attenuates the influence of the background image B by a factor (1 — «) and
then adds in the color (and opacity) values corresponding to the foreground layer F', as shown
in Figure 3.5.

In many situations, it is convenient to represent the foreground colors in pre-multiplied
form, i.e., to store (and manipulate) the aF" values directly. As Blinn (1994b) shows, the
pre-multiplied RGBA representation is preferred for several reasons, including the ability
to blur or resample (e.g., rotate) alpha-matted images without any additional complications
(just treating each RGBA band independently). However, when matting using local color
consistency (Ruzon and Tomasi 2000; Chuang, Curless, Salesin et al. 2001), the pure un-
multiplied foreground colors F' are used, since these remain constant (or vary slowly) in the
vicinity of the object edge.

The over operation is not the only kind of compositing operation that can be used. Porter
and Duff (1984) describe a number of additional operations that can be useful in photo editing
and visual effects applications. In this book, we concern ourselves with only one additional,
commonly occurring case (but see Exercise 3.2).

When light reflects off clean transparent glass, the light passing through the glass and
the light reflecting off the glass are simply added together (Figure 3.6). This model is use-
ful in the analysis of transparent motion (Black and Anandan 1996; Szeliski, Avidan, and
Anandan 2000), which occurs when such scenes are observed from a moving camera (see
Section 8.5.2).

The actual process of matting, i.e., recovering the foreground, background, and alpha
matte values from one or more images, has a rich history, which we study in Section 10.4.

3.1 Point operators 107

Figure 3.6 An example of light reflecting off the transparent glass of a picture frame (Black
and Anandan 1996) (© 1996 Elsevier. You can clearly see the woman’s portrait inside the
picture frame superimposed with the reflection of a man’s face off the glass.

Smith and Blinn (1996) have a nice survey of traditional blue-screen matting techniques,
while Toyama, Krumm, Brumitt ez al. (1999) review difference matting. More recently, there
has been a lot of activity in computational photography relating to natural image matting
(Ruzon and Tomasi 2000; Chuang, Curless, Salesin et al. 2001; Wang and Cohen 2007a),
which attempts to extract the mattes from a single natural image (Figure 3.4a) or from ex-
tended video sequences (Chuang, Agarwala, Curless et al. 2002). All of these techniques are
described in more detail in Section 10.4.

3.1.4 Histogram equalization

While the brightness and gain controls described in Section 3.1.1 can improve the appearance
of an image, how can we automatically determine their best values? One approach might
be to look at the darkest and brightest pixel values in an image and map them to pure black
and pure white. Another approach might be to find the average value in the image, push it
towards middle gray, and expand the range so that it more closely fills the displayable values
(Kopf, Uyttendaele, Deussen et al. 2007).

How can we visualize the set of lightness values in an image in order to test some of
these heuristics? The answer is to plot the histogram of the individual color channels and
luminance values, as shown in Figure 3.7b.2 From this distribution, we can compute relevant
statistics such as the minimum, maximum, and average intensity values. Notice that the image
in Figure 3.7a has both an excess of dark values and light values, but that the mid-range values
are largely under-populated. Would it not be better if we could simultaneously brighten some

2 The histogram is simply the count of the number of pixels at each gray level value. For an eight-bit image, an
accumulation table with 256 entries is needed. For higher bit depths, a table with the appropriate number of entries
(probably fewer than the full number of gray levels) should be used.

108 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6000

350000

5000 300000 7

2! _—
4000 50000 R

200000
3000
150000
2000 100000

1000 50000

250

200 —¢
150 —
100

50

0 50 100 150 200 250

(d)

Figure 3.7 Histogram analysis and equalization: (a) original image (b) color channel and in-
tensity (luminance) histograms; (c¢) cumulative distribution functions; (d) equalization (trans-
fer) functions; (e) full histogram equalization; (f) partial histogram equalization.

dark values and darken some light values, while still using the full extent of the available
dynamic range? Can you think of a mapping that might do this?

One popular answer to this question is to perform histogram equalization, i.e., to find
an intensity mapping function f(I) such that the resulting histogram is flat. The trick to
finding such a mapping is the same one that people use to generate random samples from
a probability density function, which is to first compute the cumulative distribution function
shown in Figure 3.7c.

Think of the original histogram h(I) as the distribution of grades in a class after some
exam. How can we map a particular grade to its corresponding percentile, so that students at
the 75% percentile range scored better than 3/4 of their classmates? The answer is to integrate
the distribution k() to obtain the cumulative distribution ¢([),

=¥ Zh -1+ h(I), (3.9)

where [V is the number of pixels in the image or students in the class. For any given grade or
intensity, we can look up its corresponding percentile ¢(I) and determine the final value that
pixel should take. When working with eight-bit pixel values, the I and c axes are rescaled
from [0, 255].

3.1 Point operators 109

(b)

Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.

Figure 3.7d shows the result of applying f(I) = ¢(I) to the original image. As we
can see, the resulting histogram is flat; so is the resulting image (it is “flat” in the sense
of a lack of contrast and being muddy looking). One way to compensate for this is to only
partially compensate for the histogram unevenness, e.g., by using a mapping function f(I) =
ac(I) + (1 — «)I, which is a linear blend between the cumulative distribution function and
the identity transform (a straight line). As you can see in Figure 3.7e, the resulting image
maintains more of its original grayscale distribution while having a more appealing balance.

Another potential problem with histogram equalization (or, in general, image brightening)
is that noise in dark regions can be amplified and become more visible. Exercise 3.6 suggests
some possible ways to mitigate this, as well as alternative techniques to maintain contrast and
“punch” in the original images (Larson, Rushmeier, and Piatko 1997; Stark 2000).

Locally adaptive histogram equalization

While global histogram equalization can be useful, for some images it might be preferable
to apply different kinds of equalization in different regions. Consider for example the image
in Figure 3.8a, which has a wide range of luminance values. Instead of computing a single
curve, what if we were to subdivide the image into M x M pixel blocks and perform separate
histogram equalization in each sub-block? As you can see in Figure 3.8b, the resulting image
exhibits a lot of blocking artifacts, i.e., intensity discontinuities at block boundaries.

One way to eliminate blocking artifacts is to use a moving window, i.e., to recompute the
histogram for every M x M block centered at each pixel. This process can be quite slow
(M? operations per pixel), although with clever programming only the histogram entries
corresponding to the pixels entering and leaving the block (in a raster scan across the image)
need to be updated (M operations per pixel). Note that this operation is an example of the
non-linear neighborhood operations we study in more detail in Section 3.3.1.

A more efficient approach is to compute non-overlapped block-based equalization func-
tions as before, but to then smoothly interpolate the transfer functions as we move between

110 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

Figure 3.9 Local histogram interpolation using relative (s, ¢) coordinates: (a) block-based
histograms, with block centers shown as circles; (b) corner-based “spline” histograms. Pixels
are located on grid intersections. The black square pixel’s transfer function is interpolated
from the four adjacent lookup tables (gray arrows) using the computed (s, ¢) values. Block
boundaries are shown as dashed lines.

blocks. This technique is known as adaptive histogram equalization (AHE) and its contrast-
limited (gain-limited) version is known as CLAHE (Pizer, Amburn, Austin et al. 1987).> The
weighting function for a given pixel (7, j) can be computed as a function of its horizontal
and vertical position (s, ¢) within a block, as shown in Figure 3.9a. To blend the four lookup
functions { foo, - . -, f11}. & bilinear blending function,

fs,t([) = (1 — S)(l — t)foo([) + 8(1 — t)fm(]) + (1 — S)tf()l(l) + Stfll(f) (3.10)

can be used. (See Section 3.5.2 for higher-order generalizations of such spline functions.)
Note that instead of blending the four lookup tables for each output pixel (which would be
quite slow), we can instead blend the results of mapping a given pixel through the four neigh-
boring lookups.

A variant on this algorithm is to place the lookup tables at the corners of each M x M
block (see Figure 3.9b and Exercise 3.7). In addition to blending four lookups to compute the
final value, we can also distribute each input pixel into four adjacent lookup tables during the
histogram accumulation phase (notice that the gray arrows in Figure 3.9b point both ways),
ie.,

hiea(1(i,5)) += w(i, j, k, 1), 3.11)

where w(i, j, k,1) is the bilinear weighting function between pixel (7, j) and lookup table
(k,1). This is an example of soft histogramming, which is used in a variety of other applica-

3This algorithm is implemented in the MATLAB adapthist function.

3.2 Linear filtering 111

tions, including the construction of SIFT feature descriptors (Section 4.1.3) and vocabulary
trees (Section 14.3.2).

3.1.5 Application: Tonal adjustment

One of the most widely used applications of point-wise image processing operators is the
manipulation of contrast or fone in photographs, to make them look either more attractive or
more interpretable. You can get a good sense of the range of operations possible by opening
up any photo manipulation tool and trying out a variety of contrast, brightness, and color
manipulation options, as shown in Figures 3.2 and 3.7.

Exercises 3.1, 3.5, and 3.6 have you implement some of these operations, in order to
become familiar with basic image processing operators. More sophisticated techniques for
tonal adjustment (Reinhard, Ward, Pattanaik et al. 2005; Bae, Paris, and Durand 2006) are
described in the section on high dynamic range tone mapping (Section 10.2.1).

3.2 Linear filtering

Locally adaptive histogram equalization is an example of a neighborhood operator or local
operator, which uses a collection of pixel values in the vicinity of a given pixel to deter-
mine its final output value (Figure 3.10). In addition to performing local tone adjustment,
neighborhood operators can be used to filter images in order to add soft blur, sharpen de-
tails, accentuate edges, or remove noise (Figure 3.11b—d). In this section, we look at linear
filtering operators, which involve weighted combinations of pixels in small neighborhoods.
In Section 3.3, we look at non-linear operators such as morphological filters and distance
transforms.

The most commonly used type of neighborhood operator is a linear filter, in which an
output pixel’s value is determined as a weighted sum of input pixel values (Figure 3.10),

9(i,5) = D> fli+k,j+Dh(k,1). (3.12)

k,l

The entries in the weight kernel or mask h(k,1) are often called the filter coefficients. The
above correlation operator can be more compactly notated as

g=f®h. (3.13)

A common variant on this formula is

9(i,§) =D _ =k, 5= Dbk, 1) = > fk,Dh(i —k,j 1), (3.14)
k,l

k,l

112 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

45| 60 | 98 | 127 132] 133|137 133

46| 65| 98 | 123] 126 128 131] 133 69| 95 |116]125] 129 132
47 65| 96 | 115] 119 123 135] 137 01]01f01 68 | 92 | 110 120] 126 132
471 63 | 91 |107] 113|122 138|134 * 01]02|01 = 66 | 86 | 104|114 124] 132
50 | 59| 80| 97 110 123|133 134 01]01)01 62| 78 | 94 [108] 120 129
49| 53 | 68 | 83 | 97 [113]128] 133 57| 69 | 83| 98 | 112|124
50 | 50 | 58 | 70 | 84 | 102|116 126 53|60 | 71| 85]100f114
50| 50| 52)58|69]|86|101f120

fixy) h(xy) g(xy)

Figure 3.10 Neighborhood filtering (convolution): The image on the left is convolved with
the filter in the middle to yield the image on the right. The light blue pixels indicate the source
neighborhood for the light green destination pixel.

where the sign of the offsets in f has been reversed. This is called the convolution operator,
g=fxh, (3.15)

and h is then called the impulse response function.* The reason for this name is that the kernel
function, h, convolved with an impulse signal, d(4, 7) (an image that is O everywhere except
at the origin) reproduces itself, h « § = h, whereas correlation produces the reflected signal.
(Try this yourself to verify that it is so.)

In fact, Equation (3.14) can be interpreted as the superposition (addition) of shifted im-
pulse response functions h(i — k, j —) multiplied by the input pixel values f(k,). Convolu-
tion has additional nice properties, e.g., it is both commutative and associative. As well, the
Fourier transform of two convolved images is the product of their individual Fourier trans-
forms (Section 3.4).

Both correlation and convolution are linear shift-invariant (LSI) operators, which obey
both the superposition principle (3.5),

ho(fo+fi)=hofo+hofi, (3.16)
and the shift invariance principle,
g(i,5) = fli+k,j+1) < (hog)(i,j)=(ho)i+ k,j+1), (3.17)

which means that shifting a signal commutes with applying the operator (o stands for the LSI
operator). Another way to think of shift invariance is that the operator “behaves the same
everywhere”.

4 The continuous version of convolution can be written as g(x) = f f(xz — u)h(u)du.

3.2 Linear filtering 113

(2 ()

Figure 3.11 Some neighborhood operations: (a) original image; (b) blurred; (c) sharpened;
(d) smoothed with edge-preserving filter; (e) binary image; (f) dilated; (g) distance transform;
(h) connected components. For the dilation and connected components, black (ink) pixels are
assumed to be active, i.e., to have a value of 1 in Equations (3.41-3.45).

114 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

2
1

[72]ss8[62]52]37]«[Va o] Vu] & & i

1
2 1
1 21

1 2 37
Figure 3.12 One-dimensional signal convolution as a sparse matrix-vector multiply, g =
Hf.

Occasionally, a shift-variant version of correlation or convolution may be used, e.g.,

9(i,§) =>_ f(i =k, — Dh(k, 14,), (3.18)
k,l

where h(k,l;4,j) is the convolution kernel at pixel (4,j). For example, such a spatially

varying kernel can be used to model blur in an image due to variable depth-dependent defocus.
Correlation and convolution can both be written as a matrix-vector multiply, if we first

convert the two-dimensional images f (4,) and g(7, j) into raster-ordered vectors f and g,

g=HFf, (3.19)

where the (sparse) H matrix contains the convolution kernels. Figure 3.12 shows how a
one-dimensional convolution can be represented in matrix-vector form.

Padding (border effects)

The astute reader will notice that the matrix multiply shown in Figure 3.12 suffers from
boundary effects, i.e., the results of filtering the image in this form will lead to a darkening of
the corner pixels. This is because the original image is effectively being padded with O values
wherever the convolution kernel extends beyond the original image boundaries.

To compensate for this, a number of alternative padding or extension modes have been
developed (Figure 3.13):

e zero: set all pixels outside the source image to 0 (a good choice for alpha-matted cutout
images);

e constant (border color): set all pixels outside the source image to a specified border
value;

e clamp (replicate or clamp to edge): repeat edge pixels indefinitely;

o (cyclic) wrap (repeat or tile): loop “around” the image in a “toroidal” configuration;

3.2 Linear filtering 115

Zero wrap clamp mirror

blurred zero normalized zero blurred clamp blurred mirror

Figure 3.13 Border padding (top row) and the results of blurring the padded image (bottom
row). The normalized zero image is the result of dividing (normalizing) the blurred zero-
padded RGBA image by its corresponding soft alpha value.

e mirror: reflect pixels across the image edge;

e extend: extend the signal by subtracting the mirrored version of the signal from the
edge pixel value.

In the computer graphics literature (Akenine-Moller and Haines 2002, p. 124), these mech-
anisms are known as the wrapping mode (OpenGL) or texture addressing mode (Direct3D).
The formulas for each of these modes are left to the reader (Exercise 3.8).

Figure 3.13 shows the effects of padding an image with each of the above mechanisms and
then blurring the resulting padded image. As you can see, zero padding darkens the edges,
clamp (replication) padding propagates border values inward, mirror (reflection) padding pre-
serves colors near the borders. Extension padding (not shown) keeps the border pixels fixed
(during blur).

An alternative to padding is to blur the zero-padded RGBA image and to then divide the
resulting image by its alpha value to remove the darkening effect. The results can be quite
good, as seen in the normalized zero image in Figure 3.13.

3.2.1 Separable filtering

The process of performing a convolution requires K2 (multiply-add) operations per pixel,
where K is the size (width or height) of the convolution kernel, e.g., the box filter in Fig-

116 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 3.14 Separable linear filters: For each image (a)—(e), we show the 2D filter kernel
(top), the corresponding horizontal 1D kernel (middle), and the filtered image (bottom). The
filtered Sobel and corner images are signed, scaled up by 2x and 4 x, respectively, and added
to a gray offset before display.

ure 3.14a. In many cases, this operation can be significantly sped up by first performing a
one-dimensional horizontal convolution followed by a one-dimensional vertical convolution
(which requires a total of 2K operations per pixel). A convolution kernel for which this is
possible is said to be separable.

It is easy to show that the two-dimensional kernel K corresponding to successive con-
volution with a horizontal kernel h and a vertical kernel v is the outer product of the two
kernels,

K =vh” (3.20)

(see Figure 3.14 for some examples). Because of the increased efficiency, the design of
convolution kernels for computer vision applications is often influenced by their separability.

How can we tell if a given kernel K is indeed separable? This can often be done by
inspection or by looking at the analytic form of the kernel (Freeman and Adelson 1991). A
more direct method is to treat the 2D kernel as a 2D matrix K and to take its singular value
decomposition (SVD),

K=> ouuv (3.21)

(see Appendix A.l.1 for the definition of the SVD). If only the first singular value o is
non-zero, the kernel is separable and /ooug and , /aovg provide the vertical and horizontal

1T1 1 1141641
BB 1 211 411624164 —-110 1 |-2]1
o) 51242 35/6[24]36[24|6| 5| —2|0[2| |-2| 4]|-2
1 211 411624164 -110 1 |-2]1
1)1 ! 14641
el ln] gluf2f1] gif4]6ef4]1]
o =N o N
B B
(a)box, K =5 (b) bilinear (c) “Gaussian” (d) Sobel (e) corner

3.2 Linear filtering 117

kernels (Perona 1995). For example, the Laplacian of Gaussian kernel (3.26 and 4.23) can be
implemented as the sum of two separable filters (4.24) (Wiejak, Buxton, and Buxton 1985).

What if your kernel is not separable and yet you still want a faster way to implement
it? Perona (1995), who first made the link between kernel separability and SVD, suggests
using more terms in the (3.21) series, i.e., summing up a number of separable convolutions.
Whether this is worth doing or not depends on the relative sizes of K and the number of sig-
nificant singular values, as well as other considerations, such as cache coherency and memory
locality.

3.2.2 Examples of linear filtering

Now that we have described the process for performing linear filtering, let us examine a
number of frequently used filters.

The simplest filter to implement is the moving average or box filter, which simply averages
the pixel values in a K x K window. This is equivalent to convolving the image with a kernel
of all ones and then scaling (Figure 3.14a). For large kernels, a more efficient implementation
is to slide a moving window across each scanline (in a separable filter) while adding the
newest pixel and subtracting the oldest pixel from the running sum. This is related to the
concept of summed area tables, which we describe shortly.

A smoother image can be obtained by separably convolving the image with a piecewise
linear “tent” function (also known as a Bartlett filter). Figure 3.14b shows a 3 x 3 version
of this filter, which is called the bilinear kernel, since it is the outer product of two linear
(first-order) splines (see Section 3.5.2).

Convolving the linear tent function with itself yields the cubic approximating spline,
which is called the “Gaussian” kernel (Figure 3.14c) in Burt and Adelson’s (1983a) Lapla-
cian pyramid representation (Section 3.5). Note that approximate Gaussian kernels can also
be obtained by iterated convolution with box filters (Wells 1986). In applications where the
filters really need to be rotationally symmetric, carefully tuned versions of sampled Gaussians
should be used (Freeman and Adelson 1991) (Exercise 3.10).

The kernels we just discussed are all examples of blurring (smoothing) or low-pass ker-
nels (since they pass through the lower frequencies while attenuating higher frequencies).
How good are they at doing this? In Section 3.4, we use frequency-space Fourier analysis to
examine the exact frequency response of these filters. We also introduce the sinc ((sin z)/x)
filter, which performs ideal low-pass filtering.

In practice, smoothing kernels are often used to reduce high-frequency noise. We have
much more to say about using variants on smoothing to remove noise later (see Sections 3.3.1,
3.4, and 3.7).

Surprisingly, smoothing kernels can also be used to sharpen images using a process called

118 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

unsharp masking. Since blurring the image reduces high frequencies, adding some of the
difference between the original and the blurred image makes it sharper,

Ysharp = f + ’Y(f - hblur * f) (322)

In fact, before the advent of digital photography, this was the standard way to sharpen images
in the darkroom: create a blurred (“positive”) negative from the original negative by mis-
focusing, then overlay the two negatives before printing the final image, which corresponds
to

Gunsharp = f(1 = Vbl * f). (3.23)

This is no longer a linear filter but it still works well.

Linear filtering can also be used as a pre-processing stage to edge extraction (Section 4.2)
and interest point detection (Section 4.1) algorithms. Figure 3.14d shows a simple 3 x 3 edge
extractor called the Sobel operator, which is a separable combination of a horizontal central
difference (so called because the horizontal derivative is centered on the pixel) and a vertical
tent filter (to smooth the results). As you can see in the image below the kernel, this filter
effectively emphasizes horizontal edges.

The simple corner detector (Figure 3.14¢) looks for simultaneous horizontal and vertical
second derivatives. As you can see however, it responds not only to the corners of the square,
but also along diagonal edges. Better corner detectors, or at least interest point detectors that
are more rotationally invariant, are described in Section 4.1.

3.2.3 Band-pass and steerable filters

The Sobel and corner operators are simple examples of band-pass and oriented filters. More
sophisticated kernels can be created by first smoothing the image with a (unit area) Gaussian
filter,

1 a2
Glz,y;0) = 5—¢ = (3.24)

and then taking the first or second derivatives (Marr 1982; Witkin 1983; Freeman and Adelson
1991). Such filters are known collectively as band-pass filters, since they filter out both low

and high frequencies.
The (undirected) second derivative of a two-dimensional image,
0%f 0%

20 __ 2 J i
Vif=53+t 92’ (3.25)

is known as the Laplacian operator. Blurring an image with a Gaussian and then taking its
Laplacian is equivalent to convolving directly with the Laplacian of Gaussian (LoG) filter,

x24+y2 2
L 02> Glx,y; 0), (3.26)

g

V2G(z,y;0) = (

3.2 Linear filtering 119

(b)

Figure 3.15 Second-order steerable filter (Freeman 1992) (©) 1992 1IEEE: (a) original image
of Einstein; (b) orientation map computed from the second-order oriented energy; (c) original
image with oriented structures enhanced.

which has certain nice scale-space properties (Witkin 1983; Witkin, Terzopoulos, and Kass
1986). The five-point Laplacian is just a compact approximation to this more sophisticated
filter.

Likewise, the Sobel operator is a simple approximation to a directional or oriented filter,
which can obtained by smoothing with a Gaussian (or some other filter) and then taking a
directional derivative V g = %, which is obtained by taking the dot product between the

gradient field V and a unit direction & = (cos 6, sin),

@-V(G* f)=Vy(Gxf) = (VgG) * f. (3.27)

The smoothed directional derivative filter,

Gy =uGy +0vGy = ug + v%, (3.28)
where @ = (u,v), is an example of a steerable filter, since the value of an image convolved
with G, can be computed by first convolving with the pair of filters (G, G)) and then
steering the filter (potentially locally) by multiplying this gradient field with a unit vector @
(Freeman and Adelson 1991). The advantage of this approach is that a whole family of filters
can be evaluated with very little cost.

How about steering a directional second derivative filter V'ﬁ, . VaGa’ which is the result
of taking a (smoothed) directional derivative and then taking the directional derivative again?
For example, G is the second directional derivative in the x direction.

At first glance, it would appear that the steering trick will not work, since for every di-
rection 4, we need to compute a different first directional derivative. Somewhat surprisingly,
Freeman and Adelson (1991) showed that, for directional Gaussian derivatives, it is possible

120 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

() (b) (© (d)

Figure 3.16 Fourth-order steerable filter (Freeman and Adelson 1991) (© 1991 IEEE: (a)
test image containing bars (lines) and step edges at different orientations; (b) average oriented
energy; (c) dominant orientation; (d) oriented energy as a function of angle (polar plot).

to steer any order of derivative with a relatively small number of basis functions. For example,
only three basis functions are required for the second-order directional derivative,

Gaa = 4 Gao + 2uvGoy + 0°Gyy. (3.29)

Furthermore, each of the basis filters, while not itself necessarily separable, can be computed
using a linear combination of a small number of separable filters (Freeman and Adelson
1991).

This remarkable result makes it possible to construct directional derivative filters of in-
creasingly greater directional selectivity, i.e., filters that only respond to edges that have
strong local consistency in orientation (Figure 3.15). Furthermore, higher order steerable
filters can respond to potentially more than a single edge orientation at a given location, and
they can respond to both bar edges (thin lines) and the classic step edges (Figure 3.16). In
order to do this, however, full Hilbert transform pairs need to be used for second-order and
higher filters, as described in (Freeman and Adelson 1991).

Steerable filters are often used to construct both feature descriptors (Section 4.1.3) and
edge detectors (Section 4.2). While the filters developed by Freeman and Adelson (1991)
are best suited for detecting linear (edge-like) structures, more recent work by Koethe (2003)
shows how a combined 2 x 2 boundary tensor can be used to encode both edge and junction
(“corner”) features. Exercise 3.12 has you implement such steerable filters and apply them to
finding both edge and corner features.

Summed area table (integral image)

If an image is going to be repeatedly convolved with different box filters (and especially filters
of different sizes at different locations), you can precompute the summed area table (Crow

3.2 Linear filtering 121

327123 5112|1417 3|5|12(14 (17

1|15(1(3]4 41111192431 4111]119]|24|31

511]13|5](1 17|28 | 38| 46 9 |17|28|38|46

4131216 13|24]37|48] 62 13 | 24| 37| 48| 62

214)11]|4/|8 15(30| 445981 15(30|44|59] 81
@ S= 24 (b) s= 28 (c) S= 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(i, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.

1984), which is just the running sum of all the pixel values from the origin,

%

J
s(i,5) =YY f(k,1), (3.30)
This can be efficiently computed using a recursive (raster-scan) algorithm,

s(i,§) =s(i—1,7) +s(i,7—1)—s(i— 1,5 — 1)+ f(3,J). (3.31)

The image s(4, j) is also often called an integral image (see Figure 3.17) and can actually be
computed using only two additions per pixel if separate row sums are used (Viola and Jones
2004). To find the summed area (integral) inside a rectangle [ig, 1] X [Jo, j1], we simply
combine four samples from the summed area table,
i1 g1
S(io-..i1,J0---J1) = Z Z s(i1, j1) — s(ix, jo — 1) — s(io — 1, j1) + s(io — 1, jo — 1).
i=io j=jo
(3.32)
A potential disadvantage of summed area tables is that they require log M + log IV extra bits
in the accumulation image compared to the original image, where M and NN are the image
width and height. Extensions of summed area tables can also be used to approximate other
convolution kernels (Wolberg (1990, Section 6.5.2) contains a review).
In computer vision, summed area tables have been used in face detection (Viola and
Jones 2004) to compute simple multi-scale low-level features. Such features, which consist of
adjacent rectangles of positive and negative values, are also known as boxlets (Simard, Bottou,

122 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Haffner e al. 1998). In principle, summed area tables could also be used to compute the sums
in the sum of squared differences (SSD) stereo and motion algorithms (Section 11.4). In
practice, separable moving average filters are usually preferred (Kanade, Yoshida, Oda et al.
1996), unless many different window shapes and sizes are being considered (Veksler 2003).

Recursive filtering

The incremental formula (3.31) for the summed area is an example of a recursive filter, i.e.,
one whose values depends on previous filter outputs. In the signal processing literature, such
filters are known as infinite impulse response (IIR), since the output of the filter to an impulse
(single non-zero value) goes on forever. For example, for a summed area table, an impulse
generates an infinite rectangle of 1s below and to the right of the impulse. The filters we have
previously studied in this chapter, which involve the image with a finite extent kernel, are
known as finite impulse response (FIR).

Two-dimensional IIR filters and recursive formulas are sometimes used to compute quan-
tities that involve large area interactions, such as two-dimensional distance functions (Sec-
tion 3.3.3) and connected components (Section 3.3.4).

More commonly, however, IIR filters are used inside one-dimensional separable filtering
stages to compute large-extent smoothing kernels, such as efficient approximations to Gaus-
sians and edge filters (Deriche 1990; Nielsen, Florack, and Deriche 1997). Pyramid-based
algorithms (Section 3.5) can also be used to perform such large-area smoothing computations.

3.3 More neighborhood operators

As we have just seen, linear filters can perform a wide variety of image transformations.
However non-linear filters, such as edge-preserving median or bilateral filters, can sometimes
perform even better. Other examples of neighborhood operators include morphological oper-
ators that operate on binary images, as well as semi-global operators that compute distance
transforms and find connected components in binary images (Figure 3.11f-h).

3.3.1 Non-linear filtering

The filters we have looked at so far have all been linear, i.e., their response to a sum of two
signals is the same as the sum of the individual responses. This is equivalent to saying that
each output pixel is a weighted summation of some number of input pixels (3.19). Linear
filters are easier to compose and are amenable to frequency response analysis (Section 3.4).
In many cases, however, better performance can be obtained by using a non-linear com-
bination of neighboring pixels. Consider for example the image in Figure 3.18e, where the

3.3 More neighborhood operators 123

(h)

Figure 3.18 Median and bilateral filtering: (a) original image with Gaussian noise; (b) Gaus-
sian filtered; (c) median filtered; (d) bilaterally filtered; (e) original image with shot noise; (f)
Gaussian filtered; (g) median filtered; (h) bilaterally filtered. Note that the bilateral filter fails
to remove the shot noise because the noisy pixels are too different from their neighbors.

2 1 0 1 2

112|1]2]4 1(2]1|2(4 2 10.1{0.3[{0.4({0.3(0.1 0.0/10.0{0.0{0.0|0.2
211|358 2|11|3|5]|8 110.3/0.6(/0.8/0.6(/0.3 0.0{0.0{0.0(0.4({0.8
113|769 113(7(6]9 0 (0.4]0.8]|1.0/0.8(0.4 0.0/0.0(1.0(0.8|0.4
3418|167 3|4|18(6]7 1 (0.3/0.6(0.8({0.6(0.3 0.0/10.2(0.8/0.8|1.0
415(7]|8]9 415|789 2 10.1{0.3({0.4(0.3(0.1 0.2|10.4(1.0{0.8|0.4
(a) median= 4 (b) a-mean= 4.6 (c) domain filter (d) range filter

Figure 3.19 Median and bilateral filtering: (a) median pixel (green); (b) selected a-trimmed
mean pixels; (c) domain filter (numbers along edge are pixel distances); (d) range filter.

124 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

noise, rather than being Gaussian, is shot noise, i.e., it occasionally has very large values. In
this case, regular blurring with a Gaussian filter fails to remove the noisy pixels and instead
turns them into softer (but still visible) spots (Figure 3.18f).

Median filtering

A better filter to use in this case is the median filter, which selects the median value from each
pixel’s neighborhood (Figure 3.19a). Median values can be computed in expected linear time
using a randomized select algorithm (Cormen 2001) and incremental variants have also been
developed by Tomasi and Manduchi (1998) and Bovik (2000, Section 3.2). Since the shot
noise value usually lies well outside the true values in the neighborhood, the median filter is
able to filter away such bad pixels (Figure 3.18c).

One downside of the median filter, in addition to its moderate computational cost, is that
since it selects only one input pixel value to replace each output pixel, it is not as efficient at
averaging away regular Gaussian noise (Huber 1981; Hampel, Ronchetti, Rousseeuw et al.
1986; Stewart 1999). A better choice may be the a-trimmed mean (Lee and Redner 1990)
(Crane 1997, p. 109), which averages together all of the pixels except for the « fraction that
are the smallest and the largest (Figure 3.19b).

Another possibility is to compute a weighted median, in which each pixel is used a num-
ber of times depending on its distance from the center. This turns out to be equivalent to
minimizing the weighted objective function

> wlk, DIf i+ k5 +1) = g(i,)P, (3.33)

k,l

where ¢(i, j) is the desired output value and p = 1 for the weighted median. The value p = 2
is the usual weighted mean, which is equivalent to correlation (3.12) after normalizing by the
sum of the weights (Bovik 2000, Section 3.2) (Haralick and Shapiro 1992, Section 7.2.6).
The weighted mean also has deep connections to other methods in robust statistics (see Ap-
pendix B.3), such as influence functions (Huber 1981; Hampel, Ronchetti, Rousseeuw et al.
1986).

Non-linear smoothing has another, perhaps even more important property, especially
since shot noise is rare in today’s cameras. Such filtering is more edge preserving, i.e., it
has less tendency to soften edges while filtering away high-frequency noise.

Consider the noisy image in Figure 3.18a. In order to remove most of the noise, the
Gaussian filter is forced to smooth away high-frequency detail, which is most noticeable near
strong edges. Median filtering does better but, as mentioned before, does not do as good
a job at smoothing away from discontinuities. See (Tomasi and Manduchi 1998) for some
additional references to edge-preserving smoothing techniques.

3.3 More neighborhood operators 125

While we could try to use the a-trimmed mean or weighted median, these techniques still
have a tendency to round sharp corners, since the majority of pixels in the smoothing area
come from the background distribution.

Bilateral filtering

What if we were to combine the idea of a weighted filter kernel with a better version of outlier
rejection? What if instead of rejecting a fixed percentage «, we simply reject (in a soft way)
pixels whose values differ too much from the central pixel value? This is the essential idea in
bilateral filtering, which was first popularized in the computer vision community by Tomasi
and Manduchi (1998). Chen, Paris, and Durand (2007) and Paris, Kornprobst, Tumblin et al.
(2008) cite similar earlier work (Aurich and Weule 1995; Smith and Brady 1997) as well as
the wealth of subsequent applications in computer vision and computational photography.
In the bilateral filter, the output pixel value depends on a weighted combination of neigh-
boring pixel values
PR ST CULICELY)
’ Zhlw(i,j,k,l)

The weighting coefficient w(%, j, k, [) depends on the product of a domain kernel (Figure 3.19c¢),

(3.34)

i — k)2 j—1)2
d(i, j, k. 1) = exp (— Gl Uk}) , (3.35)
2073
and a data-dependent range kernel (Figure 3.19d),
- 1f (i, 5) — f(k, DI
k1) = - . .
r(i,,k,1) = exp < 507 (3.36)
When multiplied together, these yield the data-dependent bilateral weight function
- (i—k)*+ (-0 IG5 — f&D]?
w(i, j, k1) = exp (— 207 - 502) (3.37)

Figure 3.20 shows an example of the bilateral filtering of a noisy step edge. Note how the do-
main kernel is the usual Gaussian, the range kernel measures appearance (intensity) similarity
to the center pixel, and the bilateral filter kernel is a product of these two.

Notice that the range filter (3.36) uses the vector distance between the center and the
neighboring pixel. This is important in color images, since an edge in any one of the color

bands signals a change in material and hence the need to downweight a pixel’s influence.’

5 Tomasi and Manduchi (1998) show that using the vector distance (as opposed to filtering each color band
separately) reduces color fringing effects. They also recommend taking the color difference in the more perceptually
uniform CIELAB color space (see Section 2.3.2).

126 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

d) (e) ()]

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step
edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d)
bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Since bilateral filtering is quite slow compared to regular separable filtering, a number
of acceleration techniques have been developed (Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008). Unfortunately,
these techniques tend to use more memory than regular filtering and are hence not directly
applicable to filtering full-color images.

Iterated adaptive smoothing and anisotropic diffusion

Bilateral (and other) filters can also be applied in an iterative fashion, especially if an appear-
ance more like a “cartoon” is desired (Tomasi and Manduchi 1998). When iterated filtering
is applied, a much smaller neighborhood can often be used.

Consider, for example, using only the four nearest neighbors, i.e., restricting |k —i| + |l —
jl < 1in (3.34). Observe that

. 2 s 1)2
d(i,j,k,l) = exp (—(l k) +2(J l)) (3.38)
20d

17 |k - Z| |l -]| Oa
= 3.39
{ A=e Y20 |k —i|+|l—j] =1 (3.39)

3.3 More neighborhood operators 127

We can thus re-write (3.34) as
FOG5) + 03, f Ok, D, 5k, D)
1+772kz 7(i, j, k, 1)
Zjﬂk l (t)(kal)_f(t)(7’7])]a

(i, 5) (3.40)

= [

k,l

where R = 37,) 7(i, 7, k,1), (k) are the Ny neighbors of (i, j), and we have made the
iterative nature of the filtering explicit.

As Barash (2002) notes, (3.40) is the same as the discrete anisotropic diffusion equation
first proposed by Perona and Malik (1990b).% Since its original introduction, anisotropic dif-
fusion has been extended and applied to a wide range of problems (Nielsen, Florack, and De-
riche 1997; Black, Sapiro, Marimont et al. 1998; Weickert, ter Haar Romeny, and Viergever
1998; Weickert 1998). It has also been shown to be closely related to other adaptive smooth-
ing techniques (Saint-Marc, Chen, and Medioni 1991; Barash 2002; Barash and Comaniciu
2004) as well as Bayesian regularization with a non-linear smoothness term that can be de-
rived from image statistics (Scharr, Black, and Haussecker 2003).

In its general form, the range kernel (4, j, k,1) = r(|| f(¢,5) — f(k,1)||), which is usually
called the gain or edge-stopping function, or diffusion coefficient, can be any monotonically
increasing function with 7/(z) — 0 as * — oco. Black, Sapiro, Marimont ez al. (1998) show
how anisotropic diffusion is equivalent to minimizing a robust penalty function on the image
gradients, which we discuss in Sections 3.7.1 and 3.7.2). Scharr, Black, and Haussecker
(2003) show how the edge-stopping function can be derived in a principled manner from
local image statistics. They also extend the diffusion neighborhood from N} to Ng, which
allows them to create a diffusion operator that is both rotationally invariant and incorporates
information about the eigenvalues of the local structure tensor.

Note that, without a bias term towards the original image, anisotropic diffusion and itera-
tive adaptive smoothing converge to a constant image. Unless a small number of iterations is
used (e.g., for speed), it is usually preferable to formulate the smoothing problem as a joint
minimization of a smoothness term and a data fidelity term, as discussed in Sections 3.7.1
and 3.7.2 and by Scharr, Black, and Haussecker (2003), which introduce such a bias in a
principled manner.

3.3.2 Morphology

While non-linear filters are often used to enhance grayscale and color images, they are also
used extensively to process binary images. Such images often occur after a thresholding

6 The 1/(1 + nR) factor is not present in anisotropic diffusion but becomes negligible as — 0.

128 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

L]] . *] L]
(a) (b) (©) (d (e) ()

Figure 3.21 Binary image morphology: (a) original image; (b) dilation; (c) erosion; (d)
majority; (e) opening; (f) closing. The structuring element for all examples is a 5 x 5 square.
The effects of majority are a subtle rounding of sharp corners. Opening fails to eliminate the
dot, since it is not wide enough.

operation,

9(f,t){ Lot f=t, (3.41)

0 else,

e.g., converting a scanned grayscale document into a binary image for further processing such
as optical character recognition.

The most common binary image operations are called morphological operations, since
they change the shape of the underlying binary objects (Ritter and Wilson 2000, Chapter 7).
To perform such an operation, we first convolve the binary image with a binary structuring
element and then select a binary output value depending on the thresholded result of the
convolution. (This is not the usual way in which these operations are described, but I find it
a nice simple way to unify the processes.) The structuring element can be any shape, from
a simple 3 x 3 box filter, to more complicated disc structures. It can even correspond to a
particular shape that is being sought for in the image.

Figure 3.21 shows a close-up of the convolution of a binary image f with a 3 x 3 struc-
turing element s and the resulting images for the operations described below. Let

c=f®s (3.42)

be the integer-valued count of the number of 1s inside each structuring element as it is scanned
over the image and S be the size of the structuring element (number of pixels). The standard
operations used in binary morphology include:

e dilation: dilate(f,s) = 0(c, 1);
e erosion: erode(f,s) = 0(c, 5);
e majority: maj(f,s) = 0(c, S/2);

e opening: open(f, s) = dilate(erode(f, s), s);

3.3 More neighborhood operators 129

e closing: close(f, s) = erode(dilate(f, s),).

As we can see from Figure 3.21, dilation grows (thickens) objects consisting of s, while
erosion shrinks (thins) them. The opening and closing operations tend to leave large regions
and smooth boundaries unaffected, while removing small objects or holes and smoothing
boundaries.

While we will not use mathematical morphology much in the rest of this book, it is a
handy tool to have around whenever you need to clean up some thresholded images. You
can find additional details on morphology in other textbooks on computer vision and image
processing (Haralick and Shapiro 1992, Section 5.2) (Bovik 2000, Section 2.2) (Ritter and
Wilson 2000, Section 7) as well as articles and books specifically on this topic (Serra 1982;
Serra and Vincent 1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

3.3.3 Distance transforms

The distance transform is useful in quickly precomputing the distance to a curve or set of
points using a two-pass raster algorithm (Rosenfeld and Pfaltz 1966; Danielsson 1980; Borge-
fors 1986; Paglieroni 1992; Breu, Gil, Kirkpatrick et al. 1995; Felzenszwalb and Huttenlocher
2004a; Fabbri, Costa, Torelli et al. 2008). It has many applications, including level sets (Sec-
tion 5.1.4), fast chamfer matching (binary image alignment) (Huttenlocher, Klanderman, and
Rucklidge 1993), feathering in image stitching and blending (Section 9.3.2), and nearest point
alignment (Section 12.2.1).

The distance transform D(i, j) of a binary image b(4, j) is defined as follows. Let d(k,)
be some distance metric between pixel offsets. Two commonly used metrics include the city
block or Manhattan distance

dy(k, 1) = |k + 1 (3.43)

and the Euclidean distance
do(k, 1) = VE2 4+ 12 (3.44)

The distance transform is then defined as

D(i,j) = k,l:lf?kl,rll):o di—k,j—=1), (3.45)
i.e., it is the distance to the nearest background pixel whose value is 0.

The D; city block distance transform can be efficiently computed using a forward and
backward pass of a simple raster-scan algorithm, as shown in Figure 3.22. During the forward
pass, each non-zero pixel in b is replaced by the minimum of 1 + the distance of its north or
west neighbor. During the backward pass, the same occurs, except that the minimum is both
over the current value D and 1 + the distance of the south and east neighbors (Figure 3.22).

130 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

ojofojoj1jofo ojofojoj1jo0fo0 ojofojoj1jo0fo ojofojoj1jofo
ojof1|1j1|{o0fo0 ojof1|(1|2|0f0 ojof111]2|0fo0 ojof1f1j1{o0fo0
oj1(1f(1]1|1(0 oO|1f(2F2|3|1|0 0O|1(2f2|3|1(0 01 1(0
oj1f1|1)1|1(o0 0(1f2]3 oj1f212)1f{1(o0 01 111]0
oj1f1|11|0|0fO0 oO|1f(2p1j0|0fo0 0|1 110|0f0
ojof1j0jo0jo0fo0 ojof1(0j0jo0fo0 ojof1j0j0jo0fo0
ojofojojojofo ojofo|jojojofo ojofofojojofo
(a) (b) (©) (d)

Figure 3.22 City block distance transform: (a) original binary image; (b) top to bottom
(forward) raster sweep: green values are used to compute the orange value; (c) bottom to top
(backward) raster sweep: green values are merged with old orange value; (d) final distance
transform.

Efficiently computing the Euclidean distance transform is more complicated. Here, just
keeping the minimum scalar distance to the boundary during the two passes is not sufficient.
Instead, a vector-valued distance consisting of both the x and y coordinates of the distance
to the boundary must be kept and compared using the squared distance (hypotenuse) rule. As
well, larger search regions need to be used to obtain reasonable results. Rather than explaining
the algorithm (Danielsson 1980; Borgefors 1986) in more detail, we leave it as an exercise
for the motivated reader (Exercise 3.13).

Figure 3.11g shows a distance transform computed from a binary image. Notice how
the values grow away from the black (ink) regions and form ridges in the white area of the
original image. Because of this linear growth from the starting boundary pixels, the distance
transform is also sometimes known as the grassfire transform, since it describes the time at
which a fire starting inside the black region would consume any given pixel, or a chamfer,
because it resembles similar shapes used in woodworking and industrial design. The ridges
in the distance transform become the skeleton (or medial axis transform (MAT)) of the region
where the transform is computed, and consist of pixels that are of equal distance to two (or
more) boundaries (Tek and Kimia 2003; Sebastian and Kimia 2005).

A useful extension of the basic distance transform is the signed distance transform, which
computes distances to boundary pixels for all the pixels (Lavallée and Szeliski 1995). The
simplest way to create this is to compute the distance transforms for both the original bi-
nary image and its complement and to negate one of them before combining. Because such
distance fields tend to be smooth, it is possible to store them more compactly (with mini-
mal loss in relative accuracy) using a spline defined over a quadtree or octree data structure
(Lavallée and Szeliski 1995; Szeliski and Lavallée 1996; Frisken, Perry, Rockwood et al.
2000). Such precomputed signed distance transforms can be extremely useful in efficiently
aligning and merging 2D curves and 3D surfaces (Huttenlocher, Klanderman, and Rucklidge

3.3 More neighborhood operators 131

olelolole
oo
I
1
1
.|
1
-
|
Jeol!
plvsuiven]
ototoloto e

]
eTeTeTeToToTe]
.
5
.
.
P P P S

(a) (b) (©

Figure 3.23 Connected component computation: (a) original grayscale image; (b) horizontal
runs (nodes) connected by vertical (graph) edges (dashed blue)—runs are pseudocolored with
unique colors inherited from parent nodes; (c) re-coloring after merging adjacent segments.

1993; Szeliski and Lavallée 1996; Curless and Levoy 1996), especially if the vectorial version
of the distance transform, i.e., a pointer from each pixel or voxel to the nearest boundary or
surface element, is stored and interpolated. Signed distance fields are also an essential com-
ponent of level set evolution (Section 5.1.4), where they are called characteristic functions.

3.3.4 Connected components

Another useful semi-global image operation is finding connected components, which are de-
fined as regions of adjacent pixels that have the same input value (or label). (In the remainder
of this section, consider pixels to be adjacent if they are immediate N neighbors and they
have the same input value.) Connected components can be used in a variety of applications,
such as finding individual letters in a scanned document or finding objects (say, cells) in a
thresholded image and computing their area statistics.

Consider the grayscale image in Figure 3.23a. There are four connected components in
this figure: the outermost set of white pixels, the large ring of gray pixels, the white enclosed
region, and the single gray pixel. These are shown pseudocolored in Figure 3.23c as pink,
green, blue, and brown.

To compute the connected components of an image, we first (conceptually) split the image
into horizontal runs of adjacent pixels, and then color the runs with unique labels, re-using
the labels of vertically adjacent runs whenever possible. In a second phase, adjacent runs of
different colors are then merged.

While this description is a little sketchy, it should be enough to enable a motivated stu-
dent to implement this algorithm (Exercise 3.14). Haralick and Shapiro (1992, Section 2.3)
give a much longer description of various connected component algorithms, including ones

132 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

that avoid the creation of a potentially large re-coloring (equivalence) table. Well-debugged
connected component algorithms are also available in most image processing libraries.

Once a binary or multi-valued image has been segmented into its connected components,
it is often useful to compute the area statistics for each individual region R. Such statistics
include:

o the area (number of pixels);
e the perimeter (number of boundary pixels);
e the centroid (average x and y values);

e the second moments,

M = w:;ﬁhx_x y—71 |, (3.46)

(z,y)€ER l Yy

from which the major and minor axis orientation and lengths can be computed using
eigenvalue analysis.’

These statistics can then be used for further processing, e.g., for sorting the regions by the area
size (to consider the largest regions first) or for preliminary matching of regions in different
images.

3.4 Fourier transforms

In Section 3.2, we mentioned that Fourier analysis could be used to analyze the frequency
characteristics of various filters. In this section, we explain both how Fourier analysis lets us
determine these characteristics (or equivalently, the frequency content of an image) and how
using the Fast Fourier Transform (FFT) lets us perform large-kernel convolutions in time that
is independent of the kernel’s size. More comprehensive introductions to Fourier transforms
are provided by Bracewell (1986); Glassner (1995); Oppenheim and Schafer (1996); Oppen-
heim, Schafer, and Buck (1999).

How can we analyze what a given filter does to high, medium, and low frequencies? The
answer is to simply pass a sinusoid of known frequency through the filter and to observe by
how much it is attenuated. Let

s(x) = sin(27 fx + ¢;) = sin(wx + ¢;) (3.47)

7 Moments can also be computed using Green’s theorem applied to the boundary pixels (Yang and Albregtsen
1996).

3.4 Fourier transforms 133

Y

h(x)
s(x) o(x)

Figure 3.24 The Fourier Transform as the response of a filter 2(z) to an input sinusoid
s(x) = e/“* yielding an output sinusoid o(x) = h(z) * s(z) = Ae/**+?,

be the input sinusoid whose frequency is f, angular frequency is w = 27 f, and phase is ¢;.
Note that in this section, we use the variables x and y to denote the spatial coordinates of an
image, rather than ¢ and 7 as in the previous sections. This is both because the letters ¢ and j
are used for the imaginary number (the usage depends on whether you are reading complex
variables or electrical engineering literature) and because it is clearer how to distinguish the
horizontal (x) and vertical (y) components in frequency space. In this section, we use the
letter 5 for the imaginary number, since that is the form more commonly found in the signal
processing literature (Bracewell 1986; Oppenheim and Schafer 1996; Oppenheim, Schafer,
and Buck 1999).

If we convolve the sinusoidal signal s(x) with a filter whose impulse response is h(x),
we get another sinusoid of the same frequency but different magnitude A and phase ¢,,

o(x) = h(x) * s(x) = Asin(wz + ¢,), (3.48)

as shown in Figure 3.24. To see that this is the case, remember that a convolution can be
expressed as a weighted summation of shifted input signals (3.14) and that the summation of
a bunch of shifted sinusoids of the same frequency is just a single sinusoid at that frequency.®
The new magnitude A is called the gain or magnitude of the filter, while the phase difference
A¢p = ¢, — ¢; is called the shift or phase.

In fact, a more compact notation is to use the complex-valued sinusoid

s(z) = 7" = coswr + jsinwa. (3.49)
In that case, we can simply write,

o(z) = h(z) * s(x) = Ae?*+?, (3.50)

8 If h is a general (non-linear) transform, additional harmonic frequencies are introduced. This was traditionally
the bane of audiophiles, who insisted on equipment with no harmonic distortion. Now that digital audio has intro-
duced pure distortion-free sound, some audiophiles are buying retro tube amplifiers or digital signal processors that
simulate such distortions because of their “warmer sound”.

134 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

The Fourier transform is simply a tabulation of the magnitude and phase response at each
frequency,

H(w) = F{h(z)} = Ae??, (3.51)

i.e., it is the response to a complex sinusoid of frequency w passed through the filter i(z).
The Fourier transform pair is also often written as

h(z) £ H(w). (3.52)

Unfortunately, (3.51) does not give an actual formula for computing the Fourier transform.
Instead, it gives a recipe, i.e., convolve the filter with a sinusoid, observe the magnitude and
phase shift, repeat. Fortunately, closed form equations for the Fourier transform exist both in
the continuous domain,

H(w) = / h(z)e 7% dx, (3.53)
and in the discrete domain,
1 Nl .
H(k) = + ;0 h(z)e 5%, (3.54)

where N is the length of the signal or region of analysis. These formulas apply both to filters,
such as h(x), and to signals or images, such as s(x) or g(z).

The discrete form of the Fourier transform (3.54) is known as the Discrete Fourier Trans-
form (DFT). Note that while (3.54) can be evaluated for any value of k, it only makes sense
for values in the range k € [—%, %] This is because larger values of £k alias with lower
frequencies and hence provide no additional information, as explained in the discussion on
aliasing in Section 2.3.1.

At face value, the DFT takes O(N?) operations (multiply-adds) to evaluate. Fortunately,
there exists a faster algorithm called the Fast Fourier Transform (FFT), which requires only
O(N log, N) operations (Bracewell 1986; Oppenheim, Schafer, and Buck 1999). We do not
explain the details of the algorithm here, except to say that it involves a series of logy N
stages, where each stage performs small 2 x 2 transforms (matrix multiplications with known
coefficients) followed by some semi-global permutations. (You will often see the term but-
terfly applied to these stages because of the pictorial shape of the signal processing graphs
involved.) Implementations for the FFT can be found in most numerical and signal processing
libraries.

Now that we have defined the Fourier transform, what are some of its properties and how
can they be used? Table 3.1 lists a number of useful properties, which we describe in a little
more detail below:

3.4 Fourier transforms 135

Property Signal Transform
superposition fi(x) + fa(x) F(w) + Fr(w)
shift fz—x0) F(w)eiwro
reversal f(=x) F*(w)
convolution f(z) = h(x) F(w)H (w)
correlation f(z) ® h(zx) F(w)H*(w)
multiplication f@)h(z) F(w) * H(w)
differentiation f(z) JwF(w)
domain scaling f(ax) 1/aF(w/a)
real images f(x)=f*(z) & F(w)=F(-w)
Parseval’s Theorem Y [f(2)]? = S UIF (W)

Table 3.1 Some useful properties of Fourier transforms. The original transform pair is

F(w) = F{f(x)}.

Superposition: The Fourier transform of a sum of signals is the sum of their Fourier
transforms. Thus, the Fourier transform is a linear operator.

Shift: The Fourier transform of a shifted signal is the transform of the original signal
multiplied by a linear phase shift (complex sinusoid).

Reversal: The Fourier transform of a reversed signal is the complex conjugate of the
signal’s transform.

Convolution: The Fourier transform of a pair of convolved signals is the product of
their transforms.

Correlation: The Fourier transform of a correlation is the product of the first transform
times the complex conjugate of the second one.

Multiplication: The Fourier transform of the product of two signals is the convolution
of their transforms.

Differentiation: The Fourier transform of the derivative of a signal is that signal’s
transform multiplied by the frequency. In other words, differentiation linearly empha-
sizes (magnifies) higher frequencies.

Domain scaling: The Fourier transform of a stretched signal is the equivalently com-
pressed (and scaled) version of the original transform and vice versa.

136

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Real images: The Fourier transform of a real-valued signal is symmetric around the
origin. This fact can be used to save space and to double the speed of image FFTs
by packing alternating scanlines into the real and imaginary parts of the signal being
transformed.

Parseval’s Theorem: The energy (sum of squared values) of a signal is the same as
the energy of its Fourier transform.

All of these properties are relatively straightforward to prove (see Exercise 3.15) and they will

come in handy later in the book, e.g., when designing optimum Wiener filters (Section 3.4.3)

or performing fast image correlations (Section 8.1.2).

3.4.1 Fourier transform pairs

Now that we have these properties in place, let us look at the Fourier transform pairs of some

commonly occurring filters and signals, as listed in Table 3.2. In more detail, these pairs are

as follows:

Impulse: The impulse response has a constant (all frequency) transform.
Shifted impulse: The shifted impulse has unit magnitude and linear phase.

Box filter: The box (moving average) filter

1 if <1
box(z) = if Jaf < (3.55)
0 else
has a sinc Fourier transform,)
sinc(w) = ==, (3.56)

which has an infinite number of side lobes. Conversely, the sinc filter is an ideal low-
pass filter. For a non-unit box, the width of the box a and the spacing of the zero
crossings in the sinc 1/a are inversely proportional.

Tent: The piecewise linear tent function,

tent(z) = max(0,1 — |z|), (3.57)
has a sinc® Fourier transform.
Gaussian: The (unit area) Gaussian of width o,

1 2

e 202

V2o ’

has a (unit height) Gaussian of width o~ as its Fourier transform.

G(z;0) = (3.58)

3.4 Fourier transforms

137

Name Signal Transform
impulse §(x) 1
shifted) B
impulse N (z —u) e v
| .
box filter | ‘ box(x/a) asinc(aw) ;
tent L V tent(z/a) asinc? (aw) |
Gaussian SN G(z;0) @G(Wﬂf—l) ;
Igzg)lacign (%i - %)G(wz;0) —@wQG(w; o b \
of Gaussian ~/+1=~ — ;
Gabor cos(wox)G(z;0) @G(w +wo;oh) /
unsharp (1+7)d(z) (I+7)- RN
mask —vG(x;0) @G(w; o1
windowed rcos(z/(aW)) (see Figure 3.29)
sinc = : sinc(z/a) ' .

Table 3.2 Some useful (continuous) Fourier transform pairs: The dashed line in the Fourier

transform of the shifted impulse indicates its (linear) phase. All other transforms have zero
phase (they are real-valued). Note that the figures are not necessarily drawn to scale but

are drawn to illustrate the general shape and characteristics of the filter or its response. In

particular, the Laplacian of Gaussian is drawn inverted because it resembles more a “Mexican

hat”, as it is sometimes called.

138 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

e Laplacian of Gaussian: The second derivative of a Gaussian of width o,

x? 1
has a band-pass response of
V2
VT 2G (Wi oY (3.60)

g

as its Fourier transform.

e Gabor: The even Gabor function, which is the product of a cosine of frequency wy and
a Gaussian of width o, has as its transform the sum of the two Gaussians of width ¢!
centered at w = Fwg. The odd Gabor function, which uses a sine, is the difference
of two such Gaussians. Gabor functions are often used for oriented and band-pass
filtering, since they can be more frequency selective than Gaussian derivatives.

e Unsharp mask: The unsharp mask introduced in (3.22) has as its transform a unit
response with a slight boost at higher frequencies.

e Windowed sinc: The windowed (masked) sinc function shown in Table 3.2 has a re-
sponse function that approximates an ideal low-pass filter better and better as additional
side lobes are added (W is increased). Figure 3.29 shows the shapes of these such fil-
ters along with their Fourier transforms. For these examples, we use a one-lobe raised
cosine,

rcos(z) = %(1 + cos Tz)box(x), (3.61)

also known as the Hann window, as the windowing function. Wolberg (1990) and
Oppenheim, Schafer, and Buck (1999) discuss additional windowing functions, which
include the Lanczos window, the positive first lobe of a sinc function.

We can also compute the Fourier transforms for the small discrete kernels shown in Fig-
ure 3.14 (see Table 3.3). Notice how the moving average filters do not uniformly dampen
higher frequencies and hence can lead to ringing artifacts. The binomial filter (Gomes and
Velho 1997) used as the “Gaussian” in Burt and Adelson’s (1983a) Laplacian pyramid (see
Section 3.5), does a decent job of separating the high and low frequencies, but still leaves
a fair amount of high-frequency detail, which can lead to aliasing after downsampling. The
Sobel edge detector at first linearly accentuates frequencies, but then decays at higher fre-
quencies, and hence has trouble detecting fine-scale edges, e.g., adjacent black and white
columns. We look at additional examples of small kernel Fourier transforms in Section 3.5.2,
where we study better kernels for pre-filtering before decimation (size reduction).

3.4 Fourier transforms 139

Name Kernel Transform Plot

box-3 % %(1 +2cosw) 02

box-5 %’1‘1‘1‘1‘1‘ 5(1+2cosw+2c0s2w)

linear i %(1 + cosw) 0z

binomial %’ 1 ‘ 4 ‘ 6 ‘ 4 ‘ 1 ‘ %(1 + cosw)? -

Sobel 3| -1]0]1] sin w -

corner % %(1 — cosw) 02

Table 3.3 Fourier transforms of the separable kernels shown in Figure 3.14.

140 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

3.4.2 Two-dimensional Fourier transforms

The formulas and insights we have developed for one-dimensional signals and their trans-
forms translate directly to two-dimensional images. Here, instead of just specifying a hor-
izontal or vertical frequency w; or wy, we can create an oriented sinusoid of frequency
(Wa, wy),

s(x,y) = sin(wyx + wyy). (3.62)

The corresponding two-dimensional Fourier transforms are then

H(wg,wy) / / (z,y)e —I@er oY) g dy, (3.63)

and in the discrete domain,

M-1N-1

H(ky, ky) MN ST h(a,y)e (3.64)

z=0 y=0

where M and N are the width and height of the image.

All of the Fourier transform properties from Table 3.1 carry over to two dimensions if
we replace the scalar variables x, w, g and a with their 2D vector counterparts = (x,y),
w = (wg,wy), o = (z0,Y0), and @ = (as, ay), and use vector inner products instead of
multiplications.

3.4.3 Wiener filtering

While the Fourier transform is a useful tool for analyzing the frequency characteristics of a
filter kernel or image, it can also be used to analyze the frequency spectrum of a whole class
of images.

A simple model for images is to assume that they are random noise fields whose expected
magnitude at each frequency is given by this power spectrum Py(wg,wy), i.e.,

([S(wa,wy)]?) = Ps(wg,wy), (3.65)

where the angle brackets (-) denote the expected (mean) value of a random variable.” To
generate such an image, we simply create a random Gaussian noise image S(w,,w,,) Where
each “pixel” is a zero-mean Gaussian'® of variance P, (W wy) and then take its inverse FFT.

The observation that signal spectra capture a first-order description of spatial statistics
is widely used in signal and image processing. In particular, assuming that an image is a

9 The notation E[] is also commonly used.
10 We set the DC (i.e., constant) component at S(0, 0) to the mean grey level. See Algorithm C.1 in Appendix C.2
for code to generate Gaussian noise.

3.4 Fourier transforms 141

sample from a correlated Gaussian random noise field combined with a statistical model of
the measurement process yields an optimum restoration filter known as the Wiener filter."!

To derive the Wiener filter, we analyze each frequency component of a signal’s Fourier
transform independently. The noisy image formation process can be written as

o(x,y) = s(x,y) +n(z,y), (3.66)

where s(z,y) is the (unknown) image we are trying to recover, n(z,y) is the additive noise
signal, and o(z, y) is the observed noisy image. Because of the linearity of the Fourier trans-
form, we can write

O(wz,wy) = S(wg,wy) + N(wz, wy), (3.67)

where each quantity in the above equation is the Fourier transform of the corresponding
image.

At each frequency (wy,w,), we know from our image spectrum that the unknown trans-
form component S(w,, wy) has a prior distribution which is a zero-mean Gaussian with vari-
ance P, (wg,w,). We also have noisy measurement O(w,, w,,) whose variance is P, (w, wy),
i.e., the power spectrum of the noise, which is usually assumed to be constant (white),
P (wg,wy) = o2,

According to Bayes’ Rule (Appendix B.4), the posterior estimate of S can be written as

p(O[S)p(5)
p(0)

where p(O) = [p(O|S)p(S) is a normalizing constant used to make the p(S|O) distribution

p(S|0) = (3.68)

proper (integrate to 1). The prior distribution p(S) is given by

_(5-w)?

p(S)=e 27, (3.69)
where p is the expected mean at that frequency (0 everywhere except at the origin) and the
measurement distribution P(O|S) is given by

_(s-0)?

p(S) =€ 2Pn . (3.70)

Taking the negative logarithm of both sides of (3.68) and setting p = 0 for simplicity, we
get

—logp(S|0O) = —logp(0O|S)—logp(S)+C 3.71)

= 1LhP71S —0)* + 1hP71S% 4 C, (3.72)

' Wiener is pronounced “veener” since, in German, the “w” is pronounced “v”. Remember that next time you
order “Wiener schnitzel”.

142 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

—P
—nN

() (b)

Figure 3.25 One-dimensional Wiener filter: (a) power spectrum of signal Ps(f), noise level
o2, and Wiener filter transform W (f); (b) Wiener filter spatial kernel.

which is the negative posterior log likelihood. The minimum of this quantity is easy to

compute,
Pl P, 1
= n - s =) 3.73
B T Iy A Ny A T G7)
The quantity
1
W (wg, wy) (3.74)

1402 /Py(ws,wy)
is the Fourier transform of the optimum Wiener filter needed to remove the noise from an
image whose power spectrum is Py (wg, wy).

Notice that this filter has the right qualitative properties, i.e., for low frequencies where
P, > 02, it has unit gain, whereas for high frequencies, it attenuates the noise by a factor
P,/o2. Figure 3.25 shows the one-dimensional transform W (f) and the corresponding filter
kernel w(z) for the commonly assumed case of P(f) = f~2 (Field 1987). Exercise 3.16 has
you compare the Wiener filter as a denoising algorithm to hand-tuned Gaussian smoothing.

The methodology given above for deriving the Wiener filter can easily be extended to the
case where the observed image is a noisy blurred version of the original image,

o(z,y) = b(z,y) * s(z,y) + n(z,y), (3.75)

where b(z,y) is the known blur kernel. Rather than deriving the corresponding Wiener fil-
ter, we leave it as an exercise (Exercise 3.17), which also encourages you to compare your
de-blurring results with unsharp masking and naive inverse filtering. More sophisticated al-
gorithms for blur removal are discussed in Sections 3.7 and 10.3.

Discrete cosine transform

The discrete cosine transform (DCT) is a variant of the Fourier transform particularly well-
suited to compressing images in a block-wise fashion. The one-dimensional DCT is com-
puted by taking the dot product of each N-wide block of pixels with a set of cosines of

3.4 Fourier transforms 143

: 0.p0 0.25 g 0.75 1.00
-0.25
-0.50
1NN
-1.00

Figure 3.26 Discrete cosine transform (DCT) basis functions: The first DC (i.e., constant)

basis is the horizontal blue line, the second is the brown half-cycle waveform, etc. These
bases are widely used in image and video compression standards such as JPEG.

different frequencies,

N-1
F(k) = ;0 cos (;(z + ;)k> (), (3.76)
where k is the coefficient (frequency) index, and the l/o-pixel offset is used to make the
basis coefficients symmetric (Wallace 1991). Some of the discrete cosine basis functions are
shown in Figure 3.26. As you can see, the first basis function (the straight blue line) encodes
the average DC value in the block of pixels, while the second encodes a slightly curvy version
of the slope.

In turns out that the DCT is a good approximation to the optimal Karhunen—-Loeve decom-
position of natural image statistics over small patches, which can be obtained by performing
a principal component analysis (PCA) of images, as described in Section 14.2.1. The KL-
transform de-correlates the signal optimally (assuming the signal is described by its spectrum)
and thus, theoretically, leads to optimal compression.

The two-dimensional version of the DCT is defined similarly,

F(k,1) = Nz_jl 3™ cos (;(z + ;w) cos (;(j + ;)z) £, 7). (3.77)

Like the 2D Fast Fourier Transform, the 2D DCT can be implemented separably, i.e., first
computing the DCT of each line in the block and then computing the DCT of each resulting
column. Like the FFT, each of the DCTs can also be computed in O(NN log N) time.

As we mentioned in Section 2.3.3, the DCT is widely used in today’s image and video
compression algorithms, although it is slowly being supplanted by wavelet algorithms (Si-
moncelli and Adelson 1990b), as discussed in Section 3.5.4, and overlapped variants of the
DCT (Malvar 1990, 1998, 2000), which are used in the new JPEG XR standard.'”> These

12 hitp://www.itu.int/rec/T-REC-T.832-200903-I/en.

http://www.itu.int/rec/T-REC-T.832-200903-I/en

144 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

newer algorithms suffer less from the blocking artifacts (visible edge-aligned discontinuities)
that result from the pixels in each block (typically 8 x 8) being transformed and quantized
independently. See Exercise 3.30 for ideas on how to remove blocking artifacts from com-
pressed JPEG images.

3.4.4 Application: Sharpening, blur, and noise removal

Another common application of image processing is the enhancement of images through the
use of sharpening and noise removal operations, which require some kind of neighborhood
processing. Traditionally, these kinds of operation were performed using linear filtering (see
Sections 3.2 and Section 3.4.3). Today, it is more common to use non-linear filters (Sec-
tion 3.3.1), such as the weighted median or bilateral filter (3.34—3.37), anisotropic diffusion
(3.39-3.40), or non-local means (Buades, Coll, and Morel 2008). Variational methods (Sec-
tion 3.7.1), especially those using non-quadratic (robust) norms such as the L; norm (which
is called rotal variation), are also often used. Figure 3.19 shows some examples of linear and
non-linear filters being used to remove noise.

When measuring the effectiveness of image denoising algorithms, it is common to report
the results as a peak signal-to-noise ratio (PSNR) measurement (2.119), where I(x) is the
original (noise-free) image and I (x) is the image after denoising; this is for the case where the
noisy image has been synthetically generated, so that the clean image is known. A better way
to measure the quality is to use a perceptually based similarity metric, such as the structural
similarity (SSIM) index (Wang, Bovik, Sheikh er al. 2004; Wang, Bovik, and Simoncelli
2005).

Exercises 3.11, 3.16, 3.17, 3.21, and 3.28 have you implement some of these operations
and compare their effectiveness. More sophisticated techniques for blur removal and the
related task of super-resolution are discussed in Section 10.3.

3.5 Pyramids and wavelets

So far in this chapter, all of the image transformations we have studied produce output images
of the same size as the inputs. Often, however, we may wish to change the resolution of an
image before proceeding further. For example, we may need to interpolate a small image to
make its resolution match that of the output printer or computer screen. Alternatively, we
may want to reduce the size of an image to speed up the execution of an algorithm or to save
on storage space or transmission time.

Sometimes, we do not even know what the appropriate resolution for the image should
be. Consider, for example, the task of finding a face in an image (Section 14.1.1). Since we
do not know the scale at which the face will appear, we need to generate a whole pyramid

3.5 Pyramids and wavelets 145

of differently sized images and scan each one for possible faces. (Biological visual systems
also operate on a hierarchy of scales (Marr 1982).) Such a pyramid can also be very helpful
in accelerating the search for an object by first finding a smaller instance of that object at a
coarser level of the pyramid and then looking for the full resolution object only in the vicinity
of coarse-level detections (Section 8.1.1). Finally, image pyramids are extremely useful for
performing multi-scale editing operations such as blending images while maintaining details.

In this section, we first discuss good filters for changing image resolution, i.e., upsampling
(interpolation, Section 3.5.1) and downsampling (decimation, Section 3.5.2). We then present
the concept of multi-resolution pyramids, which can be used to create a complete hierarchy
of differently sized images and to enable a variety of applications (Section 3.5.3). A closely
related concept is that of wavelets, which are a special kind of pyramid with higher frequency
selectivity and other useful properties (Section 3.5.4). Finally, we present a useful application
of pyramids, namely the blending of different images in a way that hides the seams between
the image boundaries (Section 3.5.5).

3.5.1 Interpolation

In order to interpolate (or upsample) an image to a higher resolution, we need to select some
interpolation kernel with which to convolve the image,

g(i,§) =Y f(k,Dh(i —rk,j — rl). (3.78)
k,l

This formula is related to the discrete convolution formula (3.14), except that we replace k
and [in k() with rk and rl, where r is the upsampling rate. Figure 3.27a shows how to think
of this process as the superposition of sample weighted interpolation kernels, one centered
at each input sample k. An alternative mental model is shown in Figure 3.27b, where the
kernel is centered at the output pixel value ¢ (the two forms are equivalent). The latter form
is sometimes called the polyphase filter form, since the kernel values h(i) can be stored as r
separate kernels, each of which is selected for convolution with the input samples depending
on the phase of 1 relative to the upsampled grid.

What kinds of kernel make good interpolators? The answer depends on the application
and the computation time involved. Any of the smoothing kernels shown in Tables 3.2 and 3.3
can be used after appropriate re-scaling.'® The linear interpolator (corresponding to the tent
kernel) produces interpolating piecewise linear curves, which result in unappealing creases
when applied to images (Figure 3.28a). The cubic B-spline, whose discrete 1/>-pixel sam-
pling appears as the binomial kernel in Table 3.3, is an approximating kernel (the interpolated

13 The smoothing kernels in Table 3.3 have a unit area. To turn them into interpolating kernels, we simply scale
them up by the interpolation rate r.

146 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

f(ke1) h(i-r)__

flky f(k-1) f(
I

ko
90 f()h(i-rk) a0
N(kﬂ)
k

r(k-1) ki r(k+1) r(k-1) i r(k+1)

(a) b)

Figure 3.27 Signal interpolation, g(i) = >, f(k)h(i — rk): (a) weighted summation of
input values; (b) polyphase filter interpretation.

image does not pass through the input data points) that produces soft images with reduced
high-frequency detail. The equation for the cubic B-spline is easiest to derive by convolving
the tent function (linear B-spline) with itself.

While most graphics cards use the bilinear kernel (optionally combined with a MIP-
map—see Section 3.5.3), most photo editing packages use bicubic interpolation. The cu-
bic interpolant is a C'' (derivative-continuous) piecewise-cubic spline (the term “spline” is
)14

synonymous with “piecewise-polynomial”)** whose equation is

1—(a+3)2? + (a+2)x]® if |z| <1
h(x) = § allz] = 1)(|a| —2)? if 1< |2 <2 G.79)
0 otherwise,

where a specifies the derivative at z = 1 (Parker, Kenyon, and Troxel 1983). The value of
a is often set to —1, since this best matches the frequency characteristics of a sinc function
(Figure 3.29). It also introduces a small amount of sharpening, which can be visually appeal-
ing. Unfortunately, this choice does not linearly interpolate straight lines (intensity ramps),
so some visible ringing may occur. A better choice for large amounts of interpolation is prob-
ably a = —0.5, which produces a quadratic reproducing spline; it interpolates linear and
quadratic functions exactly (Wolberg 1990, Section 5.4.3). Figure 3.29 shows the a = —1
and a = —0.5 cubic interpolating kernel along with their Fourier transforms; Figure 3.28b
and ¢ shows them being applied to two-dimensional interpolation.

Splines have long been used for function and data value interpolation because of the abil-
ity to precisely specify derivatives at control points and efficient incremental algorithms for
their evaluation (Bartels, Beatty, and Barsky 1987; Farin 1992, 1996). Splines are widely used
in geometric modeling and computer-aided design (CAD) applications, although they have

14 The term “spline” comes from the draughtsman’s workshop, where it was the name of a flexible piece of wood
or metal used to draw smooth curves.

3.5 Pyramids and wavelets 147

Figure 3.28 Two-dimensional image interpolation: (a) bilinear; (b) bicubic (a = —1); (c)

bicubic (a = —0.5); (d) windowed sinc (nine taps).

10

—tent 0! —windowed-sinc| 0.
—cubic a=-0.5
—cubic a=-1

(a) (b)

Figure 3.29 (a) Some windowed sinc functions and (b) their log Fourier transforms: raised-
cosine windowed sinc in blue, cubic interpolators (¢ = —1 and @ = —0.5) in green and
purple, and tent function in brown. They are often used to perform high-accuracy low-pass
filtering operations.

148 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

started being displaced by subdivision surfaces (Zorin, Schroder, and Sweldens 1996; Peters
and Reif 2008). In computer vision, splines are often used for elastic image deformations
(Section 3.6.2), motion estimation (Section 8.3), and surface interpolation (Section 12.3). In
fact, it is possible to carry out most image processing operations by representing images as
splines and manipulating them in a multi-resolution framework (Unser 1999).

The highest quality interpolator is generally believed to be the windowed sinc function
because it both preserves details in the lower resolution image and avoids aliasing. (It is also
possible to construct a C'' piecewise-cubic approximation to the windowed sinc by matching
its derivatives at zero crossing (Szeliski and Ito 1986).) However, some people object to the
excessive ringing that can be introduced by the windowed sinc and to the repetitive nature
of the ringing frequencies (see Figure 3.28d). For this reason, some photographers prefer
to repeatedly interpolate images by a small fractional amount (this tends to de-correlate the
original pixel grid with the final image). Additional possibilities include using the bilat-
eral filter as an interpolator (Kopf, Cohen, Lischinski et al. 2007), using global optimization
(Section 3.6) or hallucinating details (Section 10.3).

3.5.2 Decimation

While interpolation can be used to increase the resolution of an image, decimation (downsam-
pling) is required to reduce the resolution.'> To perform decimation, we first (conceptually)
convolve the image with a low-pass filter (to avoid aliasing) and then keep every rth sample.
In practice, we usually only evaluate the convolution at every rth sample,

9(i,3) =Y f(k, Dh(ri—k,rj 1), (3.80)
k,l

as shown in Figure 3.30. Note that the smoothing kernel h(k,l), in this case, is often a
stretched and re-scaled version of an interpolation kernel. Alternatively, we can write

90,) = = 7k DRG — k/r,j ~1/r) (3.81)
k,l

and keep the same kernel h(k,) for both interpolation and decimation.

One commonly used (r = 2) decimation filter is the binomial filter introduced by Burt
and Adelson (1983a). As shown in Table 3.3, this kernel does a decent job of separating
the high and low frequencies, but still leaves a fair amount of high-frequency detail, which
can lead to aliasing after downsampling. However, for applications such as image blending
(discussed later in this section), this aliasing is of little concern.

15 The term “decimation” has a gruesome etymology relating to the practice of killing every tenth soldier in
a Roman unit guilty of cowardice. It is generally used in signal processing to mean any downsampling or rate
reduction operation.

3.5 Pyramids and wavelets 149

N]

T%T f

(a) (b)

Figure 3.30 Signal decimation: (a) the original samples are (b) convolved with a low-pass
filter before being downsampled.

If, however, the downsampled images will be displayed directly to the user or, perhaps,
blended with other resolutions (as in MIP-mapping, Section 3.5.3), a higher-quality filter is
desired. For high downsampling rates, the windowed sinc pre-filter is a good choice (Fig-
ure 3.29). However, for small downsampling rates, e.g., = 2, more careful filter design is
required.

Table 3.4 shows a number of commonly used » = 2 downsampling filters, while Fig-
ure 3.31 shows their corresponding frequency responses. These filters include:

e the linear [1, 2, 1] filter gives a relatively poor response;

e the binomial [1,4, 6,4, 1] filter cuts off a lot of frequencies but is useful for computer
vision analysis pyramids;

o the cubic filters from (3.79); the a = —1 filter has a sharper fall-off than the a = —0.5
filter (Figure 3.31);

Cubic Cubic Windowed JPEG

|n| | Linear Binomial a=-1 a=-05 sinc QMF-9 2000
0 0.50 0.3750 0.5000 0.50000 0.4939 0.5638 0.6029
1 0.25 0.2500 03125 0.28125 0.2684 0.2932 0.2669
2 0.0625 0.0000 0.00000 0.0000 -0.0519 -0.0782
3 -0.0625 -0.03125 -0.0153 -0.0431 -0.0169
4 0.0000 0.0198 0.0267

Table 3.4 Filter coefficients for 2x decimation. These filters are of odd length, are sym-
metric, and are normalized to have unit DC gain (sum up to 1). See Figure 3.31 for their
associated frequency responses.

150 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1 —Linear
—Binomial
08 1 —Cubic a=-1
' —Cubic a=-0.5
06 —Wind. sinc
] —QMF-9
—JPEG 2000
04 -
02 A
0 ; ; . ——
0.1 0.2 03 04 05
0.2 4
Figure 3.31 Frequency response for some 2x decimation filters. The cubic a = —1 filter

has the sharpest fall-off but also a bit of ringing; the wavelet analysis filters (QMF-9 and
JPEG 2000), while useful for compression, have more aliasing.

e a cosine-windowed sinc function (Table 3.2);

o the QMF-9 filter of Simoncelli and Adelson (1990b) is used for wavelet denoising and
aliases a fair amount (note that the original filter coefficients are normalized to /2 gain
so they can be “self-inverting”);

e the 9/7 analysis filter from JPEG 2000 (Taubman and Marcellin 2002).

Please see the original papers for the full-precision values of some of these coefficients.

3.5.3 Multi-resolution representations

Now that we have described interpolation and decimation algorithms, we can build a complete
image pyramid (Figure 3.32). As we mentioned before, pyramids can be used to accelerate
coarse-to-fine search algorithms, to look for objects or patterns at different scales, and to per-
form multi-resolution blending operations. They are also widely used in computer graphics
hardware and software to perform fractional-level decimation using the MIP-map, which we
cover in Section 3.6.

The best known (and probably most widely used) pyramid in computer vision is Burt
and Adelson’s (1983a) Laplacian pyramid. To construct the pyramid, we first blur and sub-
sample the original image by a factor of two and store this in the next level of the pyramid
(Figure 3.33). Because adjacent levels in the pyramid are related by a sampling rate r = 2,
this kind of pyramid is known as an octave pyramid. Burt and Adelson originally proposed a

3.5 Pyramids and wavelets 151

A
N
AN
coarse %\ =2
\
/
medium / \\ =1
=0

Figure 3.32 A traditional image pyramid: each level has half the resolution (width and
height), and hence a quarter of the pixels, of its parent level.

five-tap kernel of the form

[c[o]alb]e

: (3.82)

withb = 1/4 and ¢ = 1/4 — a/2. In practice, a = 3/8, which results in the familiar binomial
kernel,

“[al6]a1

, (3.83)

which is particularly easy to implement using shifts and adds. (This was important in the days
when multipliers were expensive.) The reason they call their resulting pyramid a Gaussian
pyramid is that repeated convolutions of the binomial kernel converge to a Gaussian. '

To compute the Laplacian pyramid, Burt and Adelson first interpolate a lower resolu-
tion image to obtain a reconstructed low-pass version of the original image (Figure 3.34b).
They then subtract this low-pass version from the original to yield the band-pass “Laplacian”
image, which can be stored away for further processing. The resulting pyramid has perfect
reconstruction, i.e., the Laplacian images plus the base-level Gaussian (L, in Figure 3.34b)
are sufficient to exactly reconstruct the original image. Figure 3.33 shows the same com-
putation in one dimension as a signal processing diagram, which completely captures the
computations being performed during the analysis and re-synthesis stages.

Burt and Adelson also describe a variant on the Laplacian pyramid, where the low-pass
image is taken from the original blurred image rather than the reconstructed pyramid (piping
the output of the L box directly to the subtraction in Figure 3.34b). This variant has less

16 Then again, this is true for any smoothing kernel (Wells 1986).

152 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

\

(b)

Figure 3.33 The Gaussian pyramid shown as a signal processing diagram: The (a) analysis
and (b) re-synthesis stages are shown as using similar computations. The white circles in-
dicate zero values inserted by the T 2 upsampling operation. Notice how the reconstruction
filter coefficients are twice the analysis coefficients. The computation is shown as flowing
down the page, regardless of whether we are going from coarse to fine or vice versa.

aliasing, since it avoids one downsampling and upsampling round-trip, but it is not self-
inverting, since the Laplacian images are no longer adequate to reproduce the original image.

As with the Gaussian pyramid, the term Laplacian is a bit of a misnomer, since their
band-pass images are really differences of (approximate) Gaussians, or DoGs,

DoG{I;01,09} = Gy, * I — Goy x I = (G5, — Gy,) x 1. (3.84)

A Laplacian of Gaussian (which we saw in (3.26)) is actually its second derivative,

LoG{I;0} = V*(Gy x I) = (V2G,) * I, (3.85)
where o2 o2
2 [—_—

Vie oo o (3.86)

is the Laplacian (operator) of a function. Figure 3.35 shows how the Differences of Gaussian
and Laplacians of Gaussian look in both space and frequency.

Laplacians of Gaussian have elegant mathematical properties, which have been widely
studied in the scale-space community (Witkin 1983; Witkin, Terzopoulos, and Kass 1986;
Lindeberg 1990; Nielsen, Florack, and Deriche 1997) and can be used for a variety of appli-
cations including edge detection (Marr and Hildreth 1980; Perona and Malik 1990b), stereo
matching (Witkin, Terzopoulos, and Kass 1987), and image enhancement (Nielsen, Florack,
and Deriche 1997).

A less widely used variant is half-octave pyramids, shown in Figure 3.36a. These were
first introduced to the vision community by Crowley and Stern (1984), who call them Dif-
ference of Low-Pass (DOLP) transforms. Because of the small scale change between adja-

3.5 Pyramids and wavelets 153

Ll—‘ ”Ll n

Ho

L

(b)

Figure 3.34 The Laplacian pyramid: (a) The conceptual flow of images through processing
stages: images are high-pass and low-pass filtered, and the low-pass filtered images are pro-
cessed in the next stage of the pyramid. During reconstruction, the interpolated image and the
(optionally filtered) high-pass image are added back together. The () box indicates quantiza-
tion or some other pyramid processing, e.g., noise removal by coring (setting small wavelet
values to 0). (b) The actual computation of the high-pass filter involves first interpolating the
downsampled low-pass image and then subtracting it. This results in perfect reconstruction
when @ is the identity. The high-pass (or band-pass) images are typically called Laplacian
images, while the low-pass images are called Gaussian images.

154 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

space / \ _ _

frequency: — /\ — P ~

low-pass lower-pass

Figure 3.35 The difference of two low-pass filters results in a band-pass filter. The dashed
blue lines show the close fit to a half-octave Laplacian of Gaussian.

cent levels, the authors claim that coarse-to-fine algorithms perform better. In the image-
processing community, half-octave pyramids combined with checkerboard sampling grids
are known as quincunx sampling (Feilner, Van De Ville, and Unser 2005). In detecting multi-
scale features (Section 4.1.1), it is often common to use half-octave or even quarter-octave
pyramids (Lowe 2004; Triggs 2004). However, in this case, the subsampling only occurs
at every octave level, i.e., the image is repeatedly blurred with wider Gaussians until a full
octave of resolution change has been achieved (Figure 4.11).

3.5.4 Wavelets

While pyramids are used extensively in computer vision applications, some people use wavelet
decompositions as an alternative. Wavelets are filters that localize a signal in both space
and frequency (like the Gabor filter in Table 3.2) and are defined over a hierarchy of scales.
Wavelets provide a smooth way to decompose a signal into frequency components without
blocking and are closely related to pyramids.

Wavelets were originally developed in the applied math and signal processing communi-
ties and were introduced to the computer vision community by Mallat (1989). Strang (1989);
Simoncelli and Adelson (1990b); Rioul and Vetterli (1991); Chui (1992); Meyer (1993) all
provide nice introductions to the subject along with historical reviews, while Chui (1992) pro-
vides a more comprehensive review and survey of applications. Sweldens (1997) describes
the more recent lifting approach to wavelets that we discuss shortly.

Wavelets are widely used in the computer graphics community to perform multi-resolution
geometric processing (Stollnitz, DeRose, and Salesin 1996) and have also been used in com-
puter vision for similar applications (Szeliski 1990b; Pentland 1994; Gortler and Cohen 1995;
Yaou and Chang 1994; Lai and Vemuri 1997; Szeliski 2006b), as well as for multi-scale ori-
ented filtering (Simoncelli, Freeman, Adelson et al. 1992) and denoising (Portilla, Strela,

3.5 Pyramids and wavelets 155

coarse

1=4 coarse E\ 1=2
\

/
= i / N =
1=2 medium ﬁ . I=1
\

=1 ’ \ \

medium

o o o,
/ & o & o o o & &

(a)

Figure 3.36 Multiresolution pyramids: (a) pyramid with half-octave (quincunx) sampling
(odd levels are colored gray for clarity). (b) wavelet pyramid—each wavelet level stores 3/4
of the original pixels (usually the horizontal, vertical, and mixed gradients), so that the total
number of wavelet coefficients and original pixels is the same.

Wainwright et al. 2003).

Since both image pyramids and wavelets decompose an image into multi-resolution de-
scriptions that are localized in both space and frequency, how do they differ? The usual
answer is that traditional pyramids are overcomplete, i.e., they use more pixels than the orig-
inal image to represent the decomposition, whereas wavelets provide a tight frame, i.e., they
keep the size of the decomposition the same as the image (Figure 3.36b). However, some
wavelet families are, in fact, overcomplete in order to provide better shiftability or steering in
orientation (Simoncelli, Freeman, Adelson et al. 1992). A better distinction, therefore, might
be that wavelets are more orientation selective than regular band-pass pyramids.

How are two-dimensional wavelets constructed? Figure 3.37a shows a high-level dia-
gram of one stage of the (recursive) coarse-to-fine construction (analysis) pipeline alongside
the complementary re-construction (synthesis) stage. In this diagram, the high-pass filter
followed by decimation keeps 3/4 of the original pixels, while 1/4 of the low-frequency coef-
ficients are passed on to the next stage for further analysis. In practice, the filtering is usually
broken down into two separable sub-stages, as shown in Figure 3.37b. The resulting three
wavelet images are sometimes called the high—high (H H), high-low (H L), and low-high
(LH) images. The high-low and low-high images accentuate the horizontal and vertical
edges and gradients, while the high—high image contains the less frequently occurring mixed
derivatives.

How are the high-pass H and low-pass L filters shown in Figure 3.37b chosen and how
can the corresponding reconstruction filters I and I’ be computed? Can filters be designed

156 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

LHo | HHo LHo

H
«—
N
y
\ 4
5
\ 4

HLo

()

HHo HHo

HLo HL,

e

LHo LHo

Ly Ly

(b)

Figure 3.37 Two-dimensional wavelet decomposition: (a) high-level diagram showing the
low-pass and high-pass transforms as single boxes; (b) separable implementation, which in-
volves first performing the wavelet transform horizontally and then vertically. The I and F’
boxes are the interpolation and filtering boxes required to re-synthesize the image from its
wavelet components.

that all have finite impulse responses? This topic has been the main subject of study in the
wavelet community for over two decades. The answer depends largely on the intended ap-
plication, e.g., whether the wavelets are being used for compression, image analysis (feature
finding), or denoising. Simoncelli and Adelson (1990b) show (in Table 4.1) some good odd-
length quadrature mirror filter (QMF) coefficients that seem to work well in practice.

Since the design of wavelet filters is such a tricky art, is there perhaps a better way? In-
deed, a simpler procedure is to split the signal into its even and odd components and then
perform trivially reversible filtering operations on each sequence to produce what are called
lifted wavelets (Figures 3.38 and 3.39). Sweldens (1996) gives a wonderfully understandable
introduction to the lifting scheme for second-generation wavelets, followed by a comprehen-
sive review (Sweldens 1997).

As Figure 3.38 demonstrates, rather than first filtering the whole input sequence (image)

3.5 Pyramids and wavelets 157

12} Ho —{ Q [Ho

()

HO—’@—’HO

*’EL’L’H—‘ (Ll

(b)

Figure 3.38 One-dimensional wavelet transform: (a) usual high-pass + low-pass filters fol-
lowed by odd (| 2,) and even (| 2.) downsampling; (b) lifted version, which first selects the
odd and even subsequences and then applies a low-pass prediction stage L and a high-pass
correction stage C' in an easily reversible manner.

with high-pass and low-pass filters and then keeping the odd and even sub-sequences, the
lifting scheme first splits the sequence into its even and odd sub-components. Filtering the
even sequence with a low-pass filter L and subtracting the result from the even sequence
is trivially reversible: simply perform the same filtering and then add the result back in.
Furthermore, this operation can be performed in place, resulting in significant space savings.
The same applies to filtering the even sequence with the correction filter C', which is used to
ensure that the even sequence is low-pass. A series of such /ifting steps can be used to create
more complex filter responses with low computational cost and guaranteed reversibility.
This process can perhaps be more easily understood by considering the signal processing
diagram in Figure 3.39. During analysis, the average of the even values is subtracted from the
odd value to obtain a high-pass wavelet coefficient. However, the even samples still contain
an aliased sample of the low-frequency signal. To compensate for this, a small amount of the
high-pass wavelet is added back to the even sequence so that it is properly low-pass filtered.
(It is easy to show that the effective low-pass filter is [—1/g, 1/4, 3/4, /4, —1/g], which is in-

158 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

° o oL °

Lo

°
° Ho s Ho

oL, }
ol
H Hy
' ° L, ° ® °o L,

(b)

Figure 3.39 Lifted transform shown as a signal processing diagram: (a) The analysis stage
first predicts the odd value from its even neighbors, stores the difference wavelet, and then
compensates the coarser even value by adding in a fraction of the wavelet. (b) The synthesis
stage simply reverses the flow of computation and the signs of some of the filters and op-
erations. The light blue lines show what happens if we use four taps for the prediction and
correction instead of just two.

deed a low-pass filter.) During synthesis, the same operations are reversed with a judicious
change in sign.

Of course, we need not restrict ourselves to two-tap filters. Figure 3.39 shows as light
blue arrows additional filter coefficients that could optionally be added to the lifting scheme
without affecting its reversibility. In fact, the low-pass and high-pass filtering operations can
be interchanged, e.g., we could use a five-tap cubic low-pass filter on the odd sequence (plus
center value) first, followed by a four-tap cubic low-pass predictor to estimate the wavelet,
although I have not seen this scheme written down.

Lifted wavelets are called second-generation wavelets because they can easily adapt to
non-regular sampling topologies, e.g., those that arise in computer graphics applications such
as multi-resolution surface manipulation (Schroder and Sweldens 1995). It also turns out that
lifted weighted wavelets, i.e., wavelets whose coefficients adapt to the underlying problem
being solved (Fattal 2009), can be extremely effective for low-level image manipulation tasks
and also for preconditioning the kinds of sparse linear systems that arise in the optimization-
based approaches to vision algorithms that we discuss in Section 3.7 (Szeliski 2006b).

An alternative to the widely used “separable” approach to wavelet construction, which de-
composes each level into horizontal, vertical, and “cross” sub-bands, is to use a representation
that is more rotationally symmetric and orientationally selective and also avoids the aliasing
inherent in sampling signals below their Nyquist frequency.'” Simoncelli, Freeman, Adelson
et al. (1992) introduce such a representation, which they call a pyramidal radial frequency

17 Such aliasing can often be seen as the signal content moving between bands as the original signal is slowly
shifted.

3.5 Pyramids and wavelets 159

(b) (d)

Figure 3.40 Steerable shiftable multiscale transforms (Simoncelli, Freeman, Adelson et al.
1992) © 1992 IEEE: (a) radial multi-scale frequency domain decomposition; (b) original
image; (c) a set of four steerable filters; (d) the radial multi-scale wavelet decomposition.

implementation of shiftable multi-scale transforms or, more succinctly, steerable pyramids.
Their representation is not only overcomplete (which eliminates the aliasing problem) but is
also orientationally selective and has identical analysis and synthesis basis functions, i.e., it is
self-inverting, just like “regular” wavelets. As a result, this makes steerable pyramids a much
more useful basis for the structural analysis and matching tasks commonly used in computer
vision.

Figure 3.40a shows how such a decomposition looks in frequency space. Instead of re-
cursively dividing the frequency domain into 2 x 2 squares, which results in checkerboard
high frequencies, radial arcs are used instead. Figure 3.40b illustrates the resulting pyramid
sub-bands. Even through the representation is overcomplete, i.e., there are more wavelet co-
efficients than input pixels, the additional frequency and orientation selectivity makes this
representation preferable for tasks such as texture analysis and synthesis (Portilla and Simon-
celli 2000) and image denoising (Portilla, Strela, Wainwright ez al. 2003; Lyu and Simoncelli
2009).

160 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) (©) 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c) regular splice, (d) pyramid blend.

3.5.5 Application: Image blending

One of the most engaging and fun applications of the Laplacian pyramid presented in Sec-
tion 3.5.3 is the creation of blended composite images, as shown in Figure 3.41 (Burt and
Adelson 1983b). While splicing the apple and orange images together along the midline
produces a noticeable cut, splining them together (as Burt and Adelson (1983b) called their
procedure) creates a beautiful illusion of a truly hybrid fruit. The key to their approach is
that the low-frequency color variations between the red apple and the orange are smoothly
blended, while the higher-frequency textures on each fruit are blended more quickly to avoid
“ghosting” effects when two textures are overlaid.

To create the blended image, each source image is first decomposed into its own Lapla-
cian pyramid (Figure 3.42, left and middle columns). Each band is then multiplied by a
smooth weighting function whose extent is proportional to the pyramid level. The simplest
and most general way to create these weights is to take a binary mask image (Figure 3.43c)
and to construct a Gaussian pyramid from this mask. Each Laplacian pyramid image is then

3.5 Pyramids and wavelets 161

(a)

(d)

(2 (h) ®

@ &) @

Figure 3.42 Laplacian pyramid blending details (Burt and Adelson 1983b) (©) 1983 ACM.
The first three rows show the high, medium, and low frequency parts of the Laplacian pyramid
(taken from levels 0, 2, and 4). The left and middle columns show the original apple and
orange images weighted by the smooth interpolation functions, while the right column shows
the averaged contributions.

162 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

(c) (d)

Figure 3.43 Laplacian pyramid blend of two images of arbitrary shape (Burt and Adelson
1983b) (© 1983 ACM: (a) first input image; (b) second input image; (c) region mask; (d)
blended image.

multiplied by its corresponding Gaussian mask and the sum of these two weighted pyramids
is then used to construct the final image (Figure 3.42, right column).

Figure 3.43 shows that this process can be applied to arbitrary mask images with sur-
prising results. It is also straightforward to extend the pyramid blend to an arbitrary number
of images whose pixel provenance is indicated by an integer-valued label image (see Exer-
cise 3.20). This is particularly useful in image stitching and compositing applications, where
the exposures may vary between different images, as described in Section 9.3.4.

3.6 Geometric transformations

In the previous sections, we saw how interpolation and decimation could be used to change
the resolution of an image. In this section, we look at how to perform more general transfor-
mations, such as image rotations or general warps. In contrast to the point processes we saw
in Section 3.1, where the function applied to an image transforms the range of the image,

9(x) = h(f(2)), (3.87)

3.6 Geometric transformations 163

Figure 3.44 Image warping involves modifying the domain of an image function rather than

y similarity @ projective
translation) —

its range.

Euclidean affine

Figure 3.45 Basic set of 2D geometric image transformations.

here we look at functions that transform the domain,

9(x) = f(h(x)) (3.88)

(see Figure 3.44).

We begin by studying the global parametric 2D transformation first introduced in Sec-
tion 2.1.2. (Such a transformation is called parametric because it is controlled by a small
number of parameters.) We then turn our attention to more local general deformations such as
those defined on meshes (Section 3.6.2). Finally, we show how image warps can be combined
with cross-dissolves to create interesting morphs (in-between animations) in Section 3.6.3.
For readers interested in more details on these topics, there is an excellent survey by Heck-
bert (1986) as well as very accessible textbooks by Wolberg (1990), Gomes, Darsa, Costa
et al. (1999) and Akenine-Moller and Haines (2002). Note that Heckbert’s survey is on tex-
ture mapping, which is how the computer graphics community refers to the topic of warping
images onto surfaces.

3.6.1 Parametric transformations

Parametric transformations apply a global deformation to an image, where the behavior of the
transformation is controlled by a small number of parameters. Figure 3.45 shows a few ex-

164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix #DoF Preserves Icon
translation [I ‘ t } 2 orientation D
2x3
rigid (Buclidean) [R|t } 3 lengths Q
2x3
similarity [sR ‘ t } 4 angles Q
2x3
affine [A } 6 parallelism D
2x3
projective { H } 8 straight lines lj
3x3

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2 x 3 matrices are extended with a third [OT 1] row to form
a full 3 x 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula ' = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f, h,out g):
For every pixel « in f(x)

1. Compute the destination location ' = h(x).

2. Copy the pixel f(x) to g(x’).

Algorithm 3.1 Forward warping algorithm for transforming an image f () into an image
g(x’) through the parametric transform x’ = h(x).

3.6 Geometric transformations 165

X H(x) X gx)
(b)

Figure 3.46 Forward warping algorithm: (a) a pixel f(x) is copied to its corresponding
location &’ = h(x) in image g(x'); (b) detail of the source and destination pixel locations.

In fact, this approach suffers from several limitations. The process of copying a pixel
f () to a location &’ in g is not well defined when @’ has a non-integer value. What do we
do in such a case? What would you do?

You can round the value of ' to the nearest integer coordinate and copy the pixel there,
but the resulting image has severe aliasing and pixels that jump around a lot when animating
the transformation. You can also “distribute” the value among its four nearest neighbors in
a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the
end. This technique is called splatting and is sometimes used for volume rendering in the
graphics community (Levoy and Whitted 1985; Levoy 1988; Westover 1989; Rusinkiewicz
and Levoy 2000). Unfortunately, it suffers from both moderate amounts of aliasing and a
fair amount of blur (loss of high-resolution detail).

The second major problem with forward warping is the appearance of cracks and holes,
especially when magnifying an image. Filling such holes with their nearby neighbors can
lead to further aliasing and blurring.

What can we do instead? A preferable solution is to use inverse warping (Algorithm 3.2),
where each pixel in the destination image g(x’) is sampled from the original image f(x)
(Figure 3.47).

How does this differ from the forward warping algorithm? For one thing, since fL(m’)
is (presumably) defined for all pixels in g(«’), we no longer have holes. More importantly,
resampling an image at non-integer locations is a well-studied problem (general image inter-
polation, see Section 3.5.2) and high-quality filters that control aliasing can be used.

Where does the function il(:c’) come from? Quite often, it can simply be computed as the
inverse of h(x). In fact, all of the parametric transforms listed in Table 3.5 have closed form
solutions for the inverse transform: simply take the inverse of the 3 x 3 matrix specifying the
transform.

In other cases, it is preferable to formulate the problem of image warping as that of re-
sampling a source image f(x) given a mapping & = h(z') from destination pixels 2’ to
source pixels . For example, in optical flow (Section 8.4), we estimate the flow field as the

166 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

procedure inverseWarp(f, h,out g):

For every pixel 2’ in g(2')

1. Compute the source location = h(x’)

2. Resample f(«) at location « and copy to g(x')

Algorithm 3.2 Inverse warping algorithm for creating an image g(«’) from an image f(x)
using the parametric transform &’ = h(x).

m
L. L.

X f(x) X ge)
(b)

Figure 3.47 Inverse warping algorithm: (a) a pixel g(2’) is sampled from its corresponding

location & = h(x') in image f(x); (b) detail of the source and destination pixel locations.

location of the source pixel which produced the current pixel whose flow is being estimated,
as opposed to computing the destination pixel to which it is going. Similarly, when correcting
for radial distortion (Section 2.1.6), we calibrate the lens by computing for each pixel in the
final (undistorted) image the corresponding pixel location in the original (distorted) image.

What kinds of interpolation filter are suitable for the resampling process? Any of the fil-
ters we studied in Section 3.5.2 can be used, including nearest neighbor, bilinear, bicubic, and
windowed sinc functions. While bilinear is often used for speed (e.g., inside the inner loop
of a patch-tracking algorithm, see Section 8.1.3), bicubic, and windowed sinc are preferable
where visual quality is important.

To compute the value of f () at a non-integer location x, we simply apply our usual FIR
resampling filter,

g(x,y) =Y f(k,Dh(z —k,y —1), (3.89)
k,l

where (z,y) are the sub-pixel coordinate values and h(z,y) is some interpolating or smooth-
ing kernel. Recall from Section 3.5.2 that when decimation is being performed, the smoothing
kernel is stretched and re-scaled according to the downsampling rate r.

Unfortunately, for a general (non-zoom) image transformation, the resampling rate r is
not well defined. Consider a transformation that stretches the x dimensions while squashing

3.6 Geometric transformations 167

yA YA yA
e Al =~ X I ><§\ X’
PV ~ ~ N/~ P & ™~
T T~ . \<< R] .
X X X
(@ (b) (©

Figure 3.48 Anisotropic texture filtering: (a) Jacobian of transform A and the induced
horizontal and vertical resampling rates {ay/z, gy, Qyz, Gyry }3 (b) elliptical footprint of an
EWA smoothing kernel; (c) anisotropic filtering using multiple samples along the major axis.
Image pixels lie at line intersections.

the y dimensions. The resampling kernel should be performing regular interpolation along
the dimension and smoothing (to anti-alias the blurred image) in the y direction. This gets
even more complicated for the case of general affine or perspective transforms.

What can we do? Fortunately, Fourier analysis can help. The two-dimensional general-
ization of the one-dimensional domain scaling law given in Table 3.1 is

g(Az) & |A|71GATTS). (3.90)

For all of the transforms in Table 3.5 except perspective, the matrix A is already defined.
For perspective transformations, the matrix A is the linearized derivative of the perspective
transformation (Figure 3.48a), i.e., the local affine approximation to the stretching induced
by the projection (Heckbert 1986; Wolberg 1990; Gomes, Darsa, Costa et al. 1999; Akenine-
Moller and Haines 2002).

To prevent aliasing, we need to pre-filter the image f(x) with a filter whose frequency
response is the projection of the final desired spectrum through the AT transform (Szeliski,
Winder, and Uyttendaele 2010). In general (for non-zoom transforms), this filter is non-
separable and hence is very slow to compute. Therefore, a number of approximations to this
filter are used in practice, include MIP-mapping, elliptically weighted Gaussian averaging,
and anisotropic filtering (Akenine-M®dller and Haines 2002).

MIP-mapping

MIP-mapping was first proposed by Williams (1983) as a means to rapidly pre-filter images
being used for texture mapping in computer graphics. A MIP-map'® is a standard image

18 The term ‘MIP’ stands for multi in parvo, meaning ‘many in one’.

168 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

pyramid (Figure 3.32), where each level is pre-filtered with a high-quality filter rather than
a poorer quality approximation, such as Burt and Adelson’s (1983b) five-tap binomial. To
resample an image from a MIP-map, a scalar estimate of the resampling rate r is first com-
puted. For example, r can be the maximum of the absolute values in A (which suppresses
aliasing) or it can be the minimum (which reduces blurring). Akenine-Moller and Haines
(2002) discuss these issues in more detail.
Once a resampling rate has been specified, a fractional pyramid level is computed using
the base 2 logarithm,
Il =logy. 3.91)

One simple solution is to resample the texture from the next higher or lower pyramid level,
depending on whether it is preferable to reduce aliasing or blur. A better solution is to re-
sample both images and blend them linearly using the fractional component of /. Since most
MIP-map implementations use bilinear resampling within each level, this approach is usu-
ally called trilinear MIP-mapping. Computer graphics rendering APIs, such as OpenGL and
Direct3D, have parameters that can be used to select which variant of MIP-mapping (and of
the sampling rate » computation) should be used, depending on the desired tradeoff between
speed and quality. Exercise 3.22 has you examine some of these tradeoffs in more detail.

Elliptical Weighted Average

The Elliptical Weighted Average (EWA) filter invented by Greene and Heckbert (1986) is
based on the observation that the affine mapping = Ax’ defines a skewed two-dimensional
coordinate system in the vicinity of each source pixel « (Figure 3.48a). For every destina-
tion pixel ', the ellipsoidal projection of a small pixel grid in =’ onto x is computed (Fig-
ure 3.48b). This is then used to filter the source image g(x) with a Gaussian whose inverse
covariance matrix is this ellipsoid.

Despite its reputation as a high-quality filter (Akenine-Moller and Haines 2002), we have
found in our work (Szeliski, Winder, and Uyttendaele 2010) that because a Gaussian kernel
is used, the technique suffers simultaneously from both blurring and aliasing, compared to
higher-quality filters. The EWA is also quite slow, although faster variants based on MIP-
mapping have been proposed (Szeliski, Winder, and Uyttendaele (2010) provide some addi-
tional references).

Anisotropic filtering

An alternative approach to filtering oriented textures, which is sometimes implemented in
graphics hardware (GPUs), is to use anisotropic filtering (Barkans 1997; Akenine-Moller and
Haines 2002). In this approach, several samples at different resolutions (fractional levels in
the MIP-map) are combined along the major axis of the EWA Gaussian (Figure 3.48c).

3.6 Geometric transformations 169

f 01 92 Os ;\/\/\ I

>
| >

A
A

<V

f |
@ : (b) © () ®

interpolate warp filter sample
*h(x) ax+t *hy(x) * 6(x)

Gﬁ\ Fﬁ\/\
=T T
0] (0)]

G,

>

u

e

() (h)

Figure 3.49 One-dimensional signal resampling (Szeliski, Winder, and Uyttendaele 2010):
(a) original sampled signal f(i); (b) interpolated signal g1 (z); (c) warped signal go(z); (d)
filtered signal gs(x); (e) sampled signal f’(i). The corresponding spectra are shown below
the signals, with the aliased portions shown in red.

Multi-pass transforms

The optimal approach to warping images without excessive blurring or aliasing is to adap-
tively pre-filter the source image at each pixel using an ideal low-pass filter, i.e., an oriented
skewed sinc or low-order (e.g., cubic) approximation (Figure 3.48a). Figure 3.49 shows how
this works in one dimension. The signal is first (theoretically) interpolated to a continuous
waveform, (ideally) low-pass filtered to below the new Nyquist rate, and then re-sampled to
the final desired resolution. In practice, the interpolation and decimation steps are concate-
nated into a single polyphase digital filtering operation (Szeliski, Winder, and Uyttendaele
2010).

For parametric transforms, the oriented two-dimensional filtering and resampling opera-
tions can be approximated using a series of one-dimensional resampling and shearing trans-
forms (Catmull and Smith 1980; Heckbert 1989; Wolberg 1990; Gomes, Darsa, Costa et al.
1999; Szeliski, Winder, and Uyttendaele 2010). The advantage of using a series of one-
dimensional transforms is that they are much more efficient (in terms of basic arithmetic
operations) than large, non-separable, two-dimensional filter kernels.

In order to prevent aliasing, however, it may be necessary to upsample in the opposite di-
rection before applying a shearing transformation (Szeliski, Winder, and Uyttendaele 2010).
Figure 3.50 shows this process for a rotation, where a vertical upsampling stage is added be-
fore the horizontal shearing (and upsampling) stage. The upper image shows the appearance
of the letter being rotated, while the lower image shows its corresponding Fourier transform.

170 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

vertical horizontal shear, vertical shear
upsample + upsample + downsample

v

@) © ©) ©

Figure 3.50 Four-pass rotation (Szeliski, Winder, and Uyttendaele 2010): (a) original pixel
grid, image, and its Fourier transform; (b) vertical upsampling; (c) horizontal shear and up-
sampling; (d) vertical shear and downsampling; (e) horizontal downsampling. The general
affine case looks similar except that the first two stages perform general resampling.

3.6.2 Mesh-based warping

While parametric transforms specified by a small number of global parameters have many
uses, local deformations with more degrees of freedom are often required.

Consider, for example, changing the appearance of a face from a frown to a smile (Fig-
ure 3.51a). What is needed in this case is to curve the corners of the mouth upwards while
leaving the rest of the face intact.!” To perform such a transformation, different amounts of
motion are required in different parts of the image. Figure 3.51 shows some of the commonly
used approaches.

The first approach, shown in Figure 3.51a-b, is to specify a sparse set of corresponding
points. The displacement of these points can then be interpolated to a dense displacement field
(Chapter 8) using a variety of techniques (Nielson 1993). One possibility is to triangulate
the set of points in one image (de Berg, Cheong, van Kreveld et al. 2006; Litwinowicz and
Williams 1994; Buck, Finkelstein, Jacobs er al. 2000) and to use an affine motion model
(Table 3.5), specified by the three triangle vertices, inside each triangle. If the destination

19 Rowland and Perrett (1995); Pighin, Hecker, Lischinski et al. (1998); Blanz and Vetter (1999); Leyvand, Cohen-
Or, Dror et al. (2008) show more sophisticated examples of changing facial expression and appearance.

3.6 Geometric transformations 171

Figure 3.51 Image warping alternatives (Gomes, Darsa, Costa et al. 1999) (©) 1999 Morgan
Kaufmann: (a) sparse control points — deformation grid; (b) denser set of control point
correspondences; (c) oriented line correspondences; (d) uniform quadrilateral grid.

image is triangulated according to the new vertex locations, an inverse warping algorithm
(Figure 3.47) can be used. If the source image is triangulated and used as a texture map,
computer graphics rendering algorithms can be used to draw the new image (but care must
be taken along triangle edges to avoid potential aliasing).

Alternative methods for interpolating a sparse set of displacements include moving nearby
quadrilateral mesh vertices, as shown in Figure 3.51a, using variational (energy minimizing)
interpolants such as regularization (Litwinowicz and Williams 1994), see Section 3.7.1, or
using locally weighted (radial basis function) combinations of displacements (Nielson 1993).
(See (Section 12.3.1) for additional scattered data interpolation techniques.) If quadrilateral
meshes are used, it may be desirable to interpolate displacements down to individual pixel
values using a smooth interpolant such as a quadratic B-spline (Farin 1996; Lee, Wolberg,
Chwa et al. 1996).20

In some cases, e.g., if a dense depth map has been estimated for an image (Shade, Gortler,
He et al. 1998), we only know the forward displacement for each pixel. As mentioned before,
drawing source pixels at their destination location, i.e., forward warping (Figure 3.46), suffers
from several potential problems, including aliasing and the appearance of small cracks. An
alternative technique in this case is to forward warp the displacement field (or depth map) to

20 Note that the block-based motion models used by many video compression standards (Le Gall 1991) can be
thought of as a Oth-order (piecewise-constant) displacement field.

172 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

For each pixed X in the destination
DSUM = sl
weightum = (1
For cach line P, (3,
calculate u,w hased on #,
alculate X% based on w,e and PR,
Lillu'il\‘\,l rlactﬂm Dy=X;' h‘ For this line
dist = shorest distan n'lmln!k WP
weight = (length® | a + izt
DSUM += D, * weight
weightinm += weight
P’ X'= X + DSUM | weightsum
Diestination Image | Soutce [mage destinationlmagel X) = sourcelmape(X")

(a) (b)

Figure 3.52 Line-based image warping (Beier and Neely 1992) © 1992 ACM: (a) distance
computation and position transfer; (b) rendering algorithm; (c) two intermediate warps used

for morphing.

its new location, fill small holes in the resulting map, and then use inverse warping to perform
the resampling (Shade, Gortler, He ef al. 1998). The reason that this generally works better
than forward warping is that displacement fields tend to be much smoother than images, so
the aliasing introduced during the forward warping of the displacement field is much less
noticeable.

A second approach to specifying displacements for local deformations is to use corre-
sponding oriented line segments (Beier and Neely 1992), as shown in Figures 3.51c and 3.52.
Pixels along each line segment are transferred from source to destination exactly as specified,
and other pixels are warped using a smooth interpolation of these displacements. Each line
segment correspondence specifies a translation, rotation, and scaling, i.e., a similarity trans-
form (Table 3.5), for pixels in its vicinity, as shown in Figure 3.52a. Line segments influence
the overall displacement of the image using a weighting function that depends on the mini-
mum distance to the line segment (v in Figure 3.52a if u € [0, 1], else the shorter of the two
distances to P and Q).

For each pixel X, the target location X’ for each line correspondence is computed along
with a weight that depends on the distance and the line segment length (Figure 3.52b). The
weighted average of all target locations X then becomes the final destination location. Note
that while Beier and Neely describe this algorithm as a forward warp, an equivalent algorithm
can be written by sequencing through the destination pixels. The resulting warps are not
identical because line lengths or distances to lines may be different. Exercise 3.23 has you
implement the Beier—Neely (line-based) warp and compare it to a number of other local
deformation methods.

Yet another way of specifying correspondences in order to create image warps is to use
snakes (Section 5.1.1) combined with B-splines (Lee, Wolberg, Chwa et al. 1996). This tech-
nique is used in Apple’s Shake software and is popular in the medical imaging community.

3.6 Geometric transformations 173

Figure 3.53 Image morphing (Gomes, Darsa, Costa et al. 1999) (©) 1999 Morgan Kaufmann.
Top row: if the two images are just blended, visible ghosting results. Bottom row: both
images are first warped to the same intermediate location (e.g., halfway towards the other
image) and the resulting warped images are then blended resulting in a seamless morph.

One final possibility for specifying displacement fields is to use a mesh specifically
adapted to the underlying image content, as shown in Figure 3.51d. Specifying such meshes
by hand can involve a fair amount of work; Gomes, Darsa, Costa et al. (1999) describe an
interactive system for doing this. Once the two meshes have been specified, intermediate
warps can be generated using linear interpolation and the displacements at mesh nodes can
be interpolated using splines.

3.6.3 Application: Feature-based morphing

While warps can be used to change the appearance of or to animate a single image, even
more powerful effects can be obtained by warping and blending two or more images using a
process now commonly known as morphing (Beier and Neely 1992; Lee, Wolberg, Chwa et
al. 1996; Gomes, Darsa, Costa et al. 1999).

Figure 3.53 shows the essence of image morphing. Instead of simply cross-dissolving
between two images, which leads to ghosting as shown in the top row, each image is warped
toward the other image before blending, as shown in the bottom row. If the correspondences
have been set up well (using any of the techniques shown in Figure 3.51), corresponding
features are aligned and no ghosting results.

The above process is repeated for each intermediate frame being generated during a

174 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

morph, using different blends (and amounts of deformation) at each interval. Let ¢ € [0, 1] be
the time parameter that describes the sequence of interpolated frames. The weighting func-
tions for the two warped images in the blend go as (1 — ¢) and ¢. Conversely, the amount of
motion that image 0 undergoes at time ¢ is ¢ of the total amount of motion that is specified
by the correspondences. However, some care must be taken in defining what it means to par-
tially warp an image towards a destination, especially if the desired motion is far from linear
(Sederberg, Gao, Wang et al. 1993). Exercise 3.25 has you implement a morphing algorithm
and test it out under such challenging conditions.

3.7 Global optimization

So far in this chapter, we have covered a large number of image processing operators that
take as input one or more images and produce some filtered or transformed version of these
images. In many applications, it is more useful to first formulate the goals of the desired
transformation using some optimization criterion and then find or infer the solution that best
meets this criterion.

In this final section, we present two different (but closely related) variants on this idea.
The first, which is often called regularization or variational methods (Section 3.7.1), con-
structs a continuous global energy function that describes the desired characteristics of the
solution and then finds a minimum energy solution using sparse linear systems or related
iterative techniques. The second formulates the problem using Bayesian statistics, model-
ing both the noisy measurement process that produced the input images as well as prior
assumptions about the solution space, which are often encoded using a Markov random field
(Section 3.7.2).

Examples of such problems include surface interpolation from scattered data (Figure 3.54),
image denoising and the restoration of missing regions (Figure 3.57), and the segmentation
of images into foreground and background regions (Figure 3.61).

3.7.1 Regularization

The theory of regularization was first developed by statisticians trying to fit models to data
that severely underconstrained the solution space (Tikhonov and Arsenin 1977; Engl, Hanke,
and Neubauer 1996). Consider, for example, finding a smooth surface that passes through
(or near) a set of measured data points (Figure 3.54). Such a problem is described as ill-
posed because many possible surfaces can fit this data. Since small changes in the input can
sometimes lead to large changes in the fit (e.g., if we use polynomial interpolation), such
problems are also often ill-conditioned. Since we are trying to recover the unknown function
f(x,y) from which the data point d(z;, y;) were sampled, such problems are also often called

3.7 Global optimization 175

e
2
s ey,
A KL AT T r s

X T AT
‘:.:‘...:"“"’l:gm’””i

% ST
e s PR AL
LAl
i taiele,
‘-o,o.o,:,:o,:: o
o,

i,
3 ”

S5
atate

Brlekiete
Aty
(00

3%
(R
R
i

e ety
et ate ey

At e bt

e

e

oS trreica
Seriieea
Illnml'll

Figure 3.54 A simple surface interpolation problem: (a) nine data points of various height
scattered on a grid; (b) second-order, controlled-continuity, thin-plate spline interpolator, with
a tear along its left edge and a crease along its right (Szeliski 1989) (©) 1989 Springer.

inverse problems. Many computer vision tasks can be viewed as inverse problems, since we
are trying to recover a full description of the 3D world from a limited set of images.

In order to quantify what it means to find a smooth solution, we can define a norm on
the solution space. For one-dimensional functions f(x), we can integrate the squared first
derivative of the function,

&= / f2(z)dz (3.92)
or perhaps integrate the squared second derivative,
Ey = / f2.(2) dx. (3.93)

(Here, we use subscripts to denote differentiation.) Such energy measures are examples of
functionals, which are operators that map functions to scalar values. They are also often called
variational methods, because they measure the variation (non-smoothness) in a function.

In two dimensions (e.g., for images, flow fields, or surfaces), the corresponding smooth-

ness functionals are
&= [P+ fay)dady = [1950 de dy (3.94)

and
& = / f2o(@y) +2f2, (x,y) + f2,(x,y) do dy, (3.95)

where the mixed 2 fgy term is needed to make the measure rotationally invariant (Grimson
1983).

The first derivative norm is often called the membrane, since interpolating a set of data
points using this measure results in a tent-like structure. (In fact, this formula is a small-
deflection approximation to the surface area, which is what soap bubbles minimize.) The

176 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

second-order norm is called the thin-plate spline, since it approximates the behavior of thin
plates (e.g., flexible steel) under small deformations. A blend of the two is called the thin-
plate spline under tension; versions of these formulas where each derivative term is mul-
tiplied by a local weighting function are called controlled-continuity splines (Terzopoulos
1988). Figure 3.54 shows a simple example of a controlled-continuity interpolator fit to nine
scattered data points. In practice, it is more common to find first-order smoothness terms
used with images and flow fields (Section 8.4) and second-order smoothness associated with
surfaces (Section 12.3.1).

In addition to the smoothness term, regularization also requires a data term (or data
penalty). For scattered data interpolation (Nielson 1993), the data term measures the dis-
tance between the function f(z,y) and a set of data points d; = d(x;, y;),

Ea =Y [f(wiys) —di]. (3.96)

%

For a problem like noise removal, a continuous version of this measure can be used,

£q= / F(a.y) — d(z,y)]? dz dy. (3.97)

To obtain a global energy that can be minimized, the two energy terms are usually added
together,
E =E1+ N, (3.98)

where & is the smoothness penalty (€1, €2 or some weighted blend) and A is the regulariza-
tion parameter, which controls how smooth the solution should be.

In order to find the minimum of this continuous problem, the function f(x,y) is usually
first discretized on a regular grid.>! The most principled way to perform this discretization is
to use finite element analysis, i.e., to approximate the function with a piecewise continuous
spline, and then perform the analytic integration (Bathe 2007).

Fortunately, for both the first-order and second-order smoothness functionals, the judi-
cious selection of appropriate finite elements results in particularly simple discrete forms
(Terzopoulos 1983). The corresponding discrete smoothness energy functions become

Br = D selb DG +15) = [(0.0) = a0,) (3.99)
+ sy (i, (6,5 + 1) = f(i,5) — gy (i, 5))
and

By = h7?Y cli, HFG+1,5) = 2f(i,5) + f(i = 1,5)) (3.100)
,J

21 The alternative of using kernel basis functions centered on the data points (Boult and Kender 1986; Nielson
1993) is discussed in more detail in Section 12.3.1.

3.7 Global optimization 177

+ 20 (6,)f @+ 1,7 +1) = fi+1,5) = f(5,7 +1) + f(@,)]
+ ey (i,)5 + 1) = 2f(0,5) + £, = 1)]%,

where h is the size of the finite element grid. The h factor is only important if the energy is
being discretized at a variety of resolutions, as in coarse-to-fine or multigrid techniques.

The optional smoothness weights s, (4, j) and s,(¢, j) control the location of horizon-
tal and vertical tears (or weaknesses) in the surface. For other problems, such as coloriza-
tion (Levin, Lischinski, and Weiss 2004) and interactive tone mapping (Lischinski, Farbman,
Uyttendaele et al. 2006a), they control the smoothness in the interpolated chroma or expo-
sure field and are often set inversely proportional to the local luminance gradient strength.
For second-order problems, the crease variables ¢, (4, j), ¢m (4, 7), and ¢, (i, 7) control the
locations of creases in the surface (Terzopoulos 1988; Szeliski 1990a).

The data values g, (i,7) and g,(i,7) are gradient data terms (constraints) used by al-
gorithms, such as photometric stereo (Section 12.1.1), HDR tone mapping (Section 10.2.1)
(Fattal, Lischinski, and Werman 2002), Poisson blending (Section 9.3.4) (Pérez, Gangnet,
and Blake 2003), and gradient-domain blending (Section 9.3.4) (Levin, Zomet, Peleg et al.
2004). They are set to zero when just discretizing the conventional first-order smoothness
functional (3.94).

The two-dimensional discrete data energy is written as

Ea = w(i.)lf (i, 5) = i, 7)), (3.101)

where the local weights w(i, j) control how strongly the data constraint is enforced. These
values are set to zero where there is no data and can be set to the inverse variance of the data
measurements when there is data (as discussed by Szeliski (1989) and in Section 3.7.2).

The total energy of the discretized problem can now be written as a quadratic form

E=E;+\E, =2 Az — 22"b + ¢, (3.102)

where = [f(0,0) ... f(m — 1,n — 1)] is called the state vector.”

The sparse symmetric positive-definite matrix A is called the Hessian since it encodes the
second derivative of the energy function.®> For the one-dimensional, first-order problem, A
is tridiagonal; for the two-dimensional, first-order problem, it is multi-banded with five non-
zero entries per row. We call b the weighted data vector. Minimizing the above quadratic
form is equivalent to solving the sparse linear system

Ax = b, (3.103)

22 We use @ instead of f because this is the more common form in the numerical analysis literature (Golub and
Van Loan 1996).

23 In numerical analysis, A is called the coefficient matrix (Saad 2003); in finite element analysis (Bathe 2007), it
is called the stiffness matrix.

178 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d(i,j)O f(i+1,j+1)

sx(i,)

Figure 3.55 Graphical model interpretation of first-order regularization. The white circles
are the unknowns f (¢, j) while the dark circles are the input data d(i,). In the resistive grid
interpretation, the d and f values encode input and output voltages and the black squares
denote resistors whose conductance is set to s, (1, j), sy(%, j), and w(, j). In the spring-mass
system analogy, the circles denote elevations and the black squares denote springs. The same
graphical model can be used to depict a first-order Markov random field (Figure 3.56).

which can be done using a variety of sparse matrix techniques, such as multigrid (Briggs,
Henson, and McCormick 2000) and hierarchical preconditioners (Szeliski 2006b), as de-
scribed in Appendix A.5.

While regularization was first introduced to the vision community by Poggio, Torre, and
Koch (1985) and Terzopoulos (1986b) for problems such as surface interpolation, it was
quickly adopted by other vision researchers for such varied problems as edge detection (Sec-
tion 4.2), optical flow (Section 8.4), and shape from shading (Section 12.1) (Poggio, Torre,
and Koch 1985; Horn and Brooks 1986; Terzopoulos 1986b; Bertero, Poggio, and Torre 1988;
Brox, Bruhn, Papenberg et al. 2004). Poggio, Torre, and Koch (1985) also showed how the
discrete energy defined by Equations (3.100-3.101) could be implemented in a resistive grid,
as shown in Figure 3.55. In computational photography (Chapter 10), regularization and its
variants are commonly used to solve problems such as high-dynamic range tone mapping
(Fattal, Lischinski, and Werman 2002; Lischinski, Farbman, Uyttendaele er al. 2006a), Pois-
son and gradient-domain blending (Pérez, Gangnet, and Blake 2003; Levin, Zomet, Peleg et
al. 2004; Agarwala, Dontcheva, Agrawala et al. 2004), colorization (Levin, Lischinski, and
Weiss 2004), and natural image matting (Levin, Lischinski, and Weiss 2008).

Robust regularization

While regularization is most commonly formulated using quadratic (Ls) norms (compare
with the squared derivatives in (3.92-3.95) and squared differences in (3.100-3.101)), it can

3.7 Global optimization 179

also be formulated using non-quadratic robust penalty functions (Appendix B.3). For exam-
ple, (3.100) can be generalized to

By = Y seli Do(f(i+1,9) = £(5,9)) (3.104)
:F sy,)p(f(i, 5 +1) = f(i, 7)),

where p(z) is some monotonically increasing penalty function. For example, the family of
norms p(z) = |z|? is called p-norms. When p < 2, the resulting smoothness terms become
more piecewise continuous than totally smooth, which can better model the discontinuous
nature of images, flow fields, and 3D surfaces.

An early example of robust regularization is the graduated non-convexity (GNC) algo-
rithm introduced by Blake and Zisserman (1987). Here, the norms on the data and derivatives
are clamped to a maximum value

p(x) = min(z?, V). (3.105)

Because the resulting problem is highly non-convex (it has many local minima), a continua-
tion method is proposed, where a quadratic norm (which is convex) is gradually replaced by
the non-convex robust norm (Allgower and Georg 2003). (Around the same time, Terzopou-
los (1988) was also using continuation to infer the tear and crease variables in his surface
interpolation problems.)

Today, it is more common to use the L; (p = 1) norm, which is often called fotal variation
(Chan, Osher, and Shen 2001; Tschumperlé and Deriche 2005; Tschumperlé 2006; Kaftory,
Schechner, and Zeevi 2007). Other norms, for which the influence (derivative) more quickly
decays to zero, are presented by Black and Rangarajan (1996); Black, Sapiro, Marimont et
al. (1998) and discussed in Appendix B.3.

Even more recently, hyper-Laplacian norms with p < 1 have gained popularity, based
on the observation that the log-likelihood distribution of image derivatives follows a p ~
0.5 — 0.8 slope and is therefore a hyper-Laplacian distribution (Simoncelli 1999; Levin and
Weiss 2007; Weiss and Freeman 2007; Krishnan and Fergus 2009). Such norms have an even
stronger tendency to prefer large discontinuities over small ones. See the related discussion
in Section 3.7.2 (3.114).

While least squares regularized problems using Lo norms can be solved using linear sys-
tems, other p-norms require different iterative techniques, such as iteratively reweighted least
squares (IRLS), Levenberg—Marquardt, or alternation between local non-linear subproblems
and global quadratic regularization (Krishnan and Fergus 2009). Such techniques are dis-
cussed in Section 6.1.3 and Appendices A.3 and B.3.

180 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

3.7.2 Markov random fields

As we have just seen, regularization, which involves the minimization of energy functionals
defined over (piecewise) continuous functions, can be used to formulate and solve a variety
of low-level computer vision problems. An alternative technique is to formulate a Bayesian
model, which separately models the noisy image formation (measurement) process, as well
as assuming a statistical prior model over the solution space. In this section, we look at
priors based on Markov random fields, whose log-likelihood can be described using local
neighborhood interaction (or penalty) terms (Kindermann and Snell 1980; Geman and Geman
1984; Marroquin, Mitter, and Poggio 1987; Li 1995; Szeliski, Zabih, Scharstein et al. 2008).

The use of Bayesian modeling has several potential advantages over regularization (see
also Appendix B). The ability to model measurement processes statistically enables us to
extract the maximum information possible from each measurement, rather than just guessing
what weighting to give the data. Similarly, the parameters of the prior distribution can often
be learned by observing samples from the class we are modeling (Roth and Black 2007a;
Tappen 2007; Li and Huttenlocher 2008). Furthermore, because our model is probabilistic,
it is possible to estimate (in principle) complete probability distributions over the unknowns
being recovered and, in particular, to model the uncertainty in the solution, which can be
useful in latter processing stages. Finally, Markov random field models can be defined over
discrete variables, such as image labels (where the variables have no proper ordering), for
which regularization does not apply.

Recall from (3.68) in Section 3.4.3 (or see Appendix B.4) that, according to Bayes’ Rule,
the posterior distribution for a given set of measurements y, p(y|x), combined with a prior
p(x) over the unknowns x, is given by

ply|x)p\x

p(zly) = plylz)p(z)), (3.106)
p(y)

where p(y) = [, p(y|x)p(x) is a normalizing constant used to make the p(z|y) distribution

proper (1ntegrate to 1). Takmg the negative logarithm of both sides of (3.106), we get

—logp(zly) = —logp(y|z) — logp(x) + C, (3.107)

which is the negative posterior log likelihood.

To find the most likely (maximum a posteriori or MAP) solution & given some measure-
ments y, we simply minimize this negative log likelihood, which can also be thought of as an
energy,

E(z,y) = Eq4(x,y) + Ep(x). (3.108)

(We drop the constant C' because its value does not matter during energy minimization.) The
first term Fy(x, y) is the data energy or data penalty; it measures the negative log likelihood

3.7 Global optimization 181

that the data were observed given the unknown state . The second term E,(x) is the prior
energy; it plays a role analogous to the smoothness energy in regularization. Note that the
MAP estimate may not always be desirable, since it selects the “peak” in the posterior dis-
tribution rather than some more stable statistic—see the discussion in Appendix B.2 and by
Levin, Weiss, Durand et al. (2009).

For image processing applications, the unknowns x are the set of output pixels

x =[f(0,0)... f(m—1,n—1)],
and the data are (in the simplest case) the input pixels
y =[d(0,0)...d(m —1,n—1)]

as shown in Figure 3.56.

For a Markov random field, the probability p(x) is a Gibbs or Boltzmann distribution,
whose negative log likelihood (according to the Hammersley—Clifford theorem) can be writ-
ten as a sum of pairwise interaction potentials,

Ey(x)= > Vigwa(f(i.5), f(k, 1)), (3.109)
{G.9),(k,)}eN

where NV (7, j) denotes the neighbors of pixel (i, j). In fact, the general version of the theorem
says that the energy may have to be evaluated over a larger set of cliques, which depend on
the order of the Markov random field (Kindermann and Snell 1980; Geman and Geman 1984;
Bishop 2006; Kohli, Ladicky, and Torr 2009; Kohli, Kumar, and Torr 2009).

The most commonly used neighborhood in Markov random field modeling is the N}
neighborhood, where each pixel in the field f(4, j) interacts only with its immediate neigh-
bors. The model in Figure 3.56, which we previously used in Figure 3.55 to illustrate the
discrete version of first-order regularization, shows an Ny MRFE. The s, (i, j) and s, (4, j)
black boxes denote arbitrary interaction potentials between adjacent nodes in the random
field and the w(4, j) denote the data penalty functions. These square nodes can also be inter-
preted as factors in a factor graph version of the (undirected) graphical model (Bishop 2006),
which is another name for interaction potentials. (Strictly speaking, the factors are (improper)
probability functions whose product is the (un-normalized) posterior distribution.)

As we will see in (3.112-3.113), there is a close relationship between these interaction
potentials and the discretized versions of regularized image restoration problems. Thus, to
a first approximation, we can view energy minimization being performed when solving a
regularized problem and the maximum a posteriori inference being performed in an MRF as
equivalent.

While AV, neighborhoods are most commonly used, in some applications Ng (or even
higher order) neighborhoods perform better at tasks such as image segmentation because

182 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 3.56 Graphical model for an N\ neighborhood Markov random field. (The blue
edges are added for an Ng neighborhood.) The white circles are the unknowns f (4, j), while
the dark circles are the input data d(%, j). The s, (4,) and s, (¢, j) black boxes denote arbi-
trary interaction potentials between adjacent nodes in the random field, and the w(4, j) denote
the data penalty functions. The same graphical model can be used to depict a discrete version
of a first-order regularization problem (Figure 3.55).

they can better model discontinuities at different orientations (Boykov and Kolmogorov 2003;
Rother, Kohli, Feng et al. 2009; Kohli, Ladicky, and Torr 2009; Kohli, Kumar, and Torr 2009).

Binary MRFs

The simplest possible example of a Markov random field is a binary field. Examples of such
fields include 1-bit (black and white) scanned document images as well as images segmented
into foreground and background regions.

To denoise a scanned image, we set the data penalty to reflect the agreement between the
scanned and final images,

and the smoothness penalty to reflect the agreement between neighboring pixels
Ey(iy§) = Balin§) + B, (i,5) = s8(f(i, 1), i+ 1,5)) +s5(f(i.), (i, j +1)). B.111)

Once we have formulated the energy, how do we minimize it? The simplest approach is
to perform gradient descent, flipping one state at a time if it produces a lower energy. This ap-
proach is known as contextual classification (Kittler and Foglein 1984), iterated conditional
modes (ICM) (Besag 1986), or highest confidence first (HCF) (Chou and Brown 1990) if the
pixel with the largest energy decrease is selected first.

Unfortunately, these downhill methods tend to get easily stuck in local minima. An al-
ternative approach is to add some randomness to the process, which is known as stochastic

3.7 Global optimization 183

gradient descent (Metropolis, Rosenbluth, Rosenbluth ef al. 1953; Geman and Geman 1984).
When the amount of noise is decreased over time, this technique is known as simulated an-
nealing (Kirkpatrick, Gelatt, and Vecchi 1983; Carnevali, Coletti, and Patarnello 1985; Wol-
berg and Pavlidis 1985; Swendsen and Wang 1987) and was first popularized in computer
vision by Geman and Geman (1984) and later applied to stereo matching by Barnard (1989),
among others.

Even this technique, however, does not perform that well (Boykov, Veksler, and Zabih
2001). For binary images, a much better technique, introduced to the computer vision com-
munity by Boykov, Veksler, and Zabih (2001) is to re-formulate the energy minimization as
a max-flow/min-cut graph optimization problem (Greig, Porteous, and Seheult 1989). This
technique has informally come to be known as graph cuts in the computer vision community
(Boykov and Kolmogorov 2010). For simple energy functions, e.g., those where the penalty
for non-identical neighboring pixels is a constant, this algorithm is guaranteed to produce the
global minimum. Kolmogorov and Zabih (2004) formally characterize the class of binary
energy potentials (regularity conditions) for which these results hold, while newer work by
Komodakis, Tziritas, and Paragios (2008) and Rother, Kolmogorov, Lempitsky et al. (2007)
provide good algorithms for the cases when they do not.

In addition to the above mentioned techniques, a number of other optimization approaches
have been developed for MRF energy minimization, such as (loopy) belief propagation and
dynamic programming (for one-dimensional problems). These are discussed in more detail
in Appendix B.5 as well as the comparative survey paper by Szeliski, Zabih, Scharstein et al.
(2008).

Ordinal-valued MRFs

In addition to binary images, Markov random fields can be applied to ordinal-valued labels
such as grayscale images or depth maps. The term “ordinal” indicates that the labels have an
implied ordering, e.g., that higher values are lighter pixels. In the next section, we look at
unordered labels, such as source image labels for image compositing.

In many cases, it is common to extend the binary data and smoothness prior terms as

Ed(iaj) = w(i’j)pd(f(iaj) - d(lm])) (3.112)
and
Ep(iaj) = Sw(i>j)pp(f(i>j) - f(l + 17j)) + sy(laj)pp(f(laj) - f(Z’] + 1))7 (31 13)

which are robust generalizations of the quadratic penalty terms (3.101) and (3.100), first
introduced in (3.105). As before, the w(, j), s2(¢,7) and s, (¢, j) weights can be used to
locally control the data weighting and the horizontal and vertical smoothness. Instead of

184 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b) (©) (d)

Figure 3.57 Grayscale image denoising and inpainting: (a) original image; (b) image
corrupted by noise and with missing data (black bar); (c) image restored using loopy be-
lief propagation; (d) image restored using expansion move graph cuts. Images are from
http://vision.middlebury.edu/MRF/results/ (Szeliski, Zabih, Scharstein et al. 2008).

using a quadratic penalty, however, a general monotonically increasing penalty function p()
is used. (Different functions can be used for the data and smoothness terms.) For example,
pp can be a hyper-Laplacian penalty

pp(d) = dP, p<1, (3.114)

which better encodes the distribution of gradients (mainly edges) in an image than either a
quadratic or linear (total variation) penalty.”* Levin and Weiss (2007) use such a penalty
to separate a transmitted and reflected image (Figure 8.17) by encouraging gradients to lie in
one or the other image, but not both. More recently, Levin, Fergus, Durand et al. (2007) use
the hyper-Laplacian as a prior for image deconvolution (deblurring) and Krishnan and Fergus
(2009) develop a faster algorithm for solving such problems. For the data penalty, p; can be
quadratic (to model Gaussian noise) or the log of a contaminated Gaussian (Appendix B.3).

When p,, is a quadratic function, the resulting Markov random field is called a Gaussian
Markov random field (GMRF) and its minimum can be found by sparse linear system solving
(3.103). When the weighting functions are uniform, the GMRF becomes a special case of
Wiener filtering (Section 3.4.3). Allowing the weighting functions to depend on the input
image (a special kind of conditional random field, which we describe below) enables quite
sophisticated image processing algorithms to be performed, including colorization (Levin,
Lischinski, and Weiss 2004), interactive tone mapping (Lischinski, Farbman, Uyttendaele et
al. 2006a), natural image matting (Levin, Lischinski, and Weiss 2008), and image restoration
(Tappen, Liu, Freeman et al. 2007).

24 Note that, unlike a quadratic penalty, the sum of the horizontal and vertical derivative p-norms is not rotationally
invariant. A better approach may be to locally estimate the gradient direction and to impose different norms on the
perpendicular and parallel components, which Roth and Black (2007b) call a steerable random field.

http://vision.middlebury.edu/MRF/results/

3.7 Global optimization 185

l[l i lul ¥ l‘I i . A

(a) initial labeling (b) standard move (¢) a-B-swap (d) a-expansion

Figure 3.58 Multi-level graph optimization from (Boykov, Veksler, and Zabih 2001) ©
2001 IEEE: (a) initial problem configuration; (b) the standard move only changes one pixel;
(c) the a-(-swap optimally exchanges all « and [3-labeled pixels; (d) the a-expansion move
optimally selects among current pixel values and the « label.

When p4 or p, are non-quadratic functions, gradient descent techniques such as non-
linear least squares or iteratively re-weighted least squares can sometimes be used (Ap-
pendix A.3). However, if the search space has lots of local minima, as is the case for stereo
matching (Barnard 1989; Boykov, Veksler, and Zabih 2001), more sophisticated techniques
are required.

The extension of graph cut techniques to multi-valued problems was first proposed by
Boykov, Veksler, and Zabih (2001). In their paper, they develop two different algorithms,
called the swap move and the expansion move, which iterate among a series of binary labeling
sub-problems to find a good solution (Figure 3.58). Note that a global solution is generally not
achievable, as the problem is provably NP-hard for general energy functions. Because both
these algorithms use a binary MRF optimization inside their inner loop, they are subject to the
kind of constraints on the energy functions that occur in the binary labeling case (Kolmogorov
and Zabih 2004). Appendix B.5.4 discusses these algorithms in more detail, along with some
more recently developed approaches to this problem.

Another MRF inference technique is belief propagation (BP). While belief propagation
was originally developed for inference over trees, where it is exact (Pearl 1988), it has more
recently been applied to graphs with loops such as Markov random fields (Freeman, Pasz-
tor, and Carmichael 2000; Yedidia, Freeman, and Weiss 2001). In fact, some of the better
performing stereo-matching algorithms use loopy belief propagation (LBP) to perform their
inference (Sun, Zheng, and Shum 2003). LBP is discussed in more detail in Appendix B.5.3
as well as the comparative survey paper on MRF optimization (Szeliski, Zabih, Scharstein et
al. 2008).

Figure 3.57 shows an example of image denoising and inpainting (hole filling) using a
non-quadratic energy function (non-Gaussian MRF). The original image has been corrupted
by noise and a portion of the data has been removed (the black bar). In this case, the loopy

186 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 3.59 Graphical model for a Markov random field with a more complex measurement
model. The additional colored edges show how combinations of unknown values (say, in a
sharp image) produce the measured values (a noisy blurred image). The resulting graphical
model is still a classic MRF and is just as easy to sample from, but some inference algorithms
(e.g., those based on graph cuts) may not be applicable because of the increased network
complexity, since state changes during the inference become more entangled and the posterior
MRF has much larger cliques.

belief propagation algorithm computes a slightly lower energy and also a smoother image
than the alpha-expansion graph cut algorithm.

Of course, the above formula (3.113) for the smoothness term E, (i,) just shows the
simplest case. In more recent work, Roth and Black (2009) propose a Field of Experts (FOE)
model, which sums up a large number of exponentiated local filter outputs to arrive at the
smoothness penalty. Weiss and Freeman (2007) analyze this approach and compare it to the
simpler hyper-Laplacian model of natural image statistics. Lyu and Simoncelli (2009) use
Gaussian Scale Mixtures (GSMs) to construct an inhomogeneous multi-scale MRF, with one
(positive exponential) GMRF modulating the variance (amplitude) of another Gaussian MRF.

Itis also possible to extend the measurement model to make the sampled (noise-corrupted)
input pixels correspond to blends of unknown (latent) image pixels, as in Figure 3.59. This is
the commonly occurring case when trying to de-blur an image. While this kind of a model is
still a traditional generative Markov random field, finding an optimal solution can be difficult
because the clique sizes get larger. In such situations, gradient descent techniques, such
as iteratively reweighted least squares, can be used (Joshi, Zitnick, Szeliski et al. 2009).
Exercise 3.31 has you explore some of these issues.

3.7 Global optimization 187

Figure 3.60 An unordered label MRF (Agarwala, Dontcheva, Agrawala et al. 2004) (©
2004 ACM: Strokes in each of the source images on the left are used as constraints on an
MREF optimization, which is solved using graph cuts. The resulting multi-valued label field is
shown as a color overlay in the middle image, and the final composite is shown on the right.

Unordered labels

Another case with multi-valued labels where Markov random fields are often applied are
unordered labels, i.e., labels where there is no semantic meaning to the numerical difference
between the values of two labels. For example, if we are classifying terrain from aerial
imagery, it makes no sense to take the numeric difference between the labels assigned to
forest, field, water, and pavement. In fact, the adjacencies of these various kinds of terrain
each have different likelihoods, so it makes more sense to use a prior of the form

Byli.) = (i V10, 5), 16 + 1,9) + 5,6 HV GG, 165 +1), (G.115)

where V (lg,11) is a general compatibility or potential function. (Note that we have also
replaced f (¢, j) with [(4, j) to make it clearer that these are labels rather than discrete function
samples.) An alternative way to write this prior energy (Boykov, Veksler, and Zabih 2001;
Szeliski, Zabih, Scharstein et al. 2008) is

Ey= Y Viglply), (3.116)
(P,9)EN

where the (p, ¢) are neighboring pixels and a spatially varying potential function V}, 4 is eval-
uated for each neighboring pair.

An important application of unordered MRF labeling is seam finding in image composit-
ing (Davis 1998; Agarwala, Dontcheva, Agrawala et al. 2004) (see Figure 3.60, which is
explained in more detail in Section 9.3.2). Here, the compatibility V}, ,(I,, ;) measures the
quality of the visual appearance that would result from placing a pixel p from image [, next
to a pixel ¢ from image l,. As with most MRFs, we assume that prq(l,) =0, ie., itis per-
fectly fine to choose contiguous pixels from the same image. For different labels, however,

188 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 3.61 Image segmentation (Boykov and Funka-Lea 2006) (¢) 2006 Springer: The user
draws a few red strokes in the foreground object and a few blue ones in the background. The
system computes color distributions for the foreground and background and solves a binary
MRE. The smoothness weights are modulated by the intensity gradients (edges), which makes
this a conditional random field (CRF).

the compatibility V), 4(I,, ;) may depend on the values of the underlying pixels I;, (p) and
L,(q).

Consider, for example, where one image Iy is all sky blue, i.e., In(p) = Io(q) = B, while
the other image I3 has a transition from sky blue, I (p) = B, to forest green, I;(¢) = G.

IO:Pq pqzll

In this case, V), 4(1,0) = 0 (the colors agree), while V,, ,(0,1) > 0 (the colors disagree).

Conditional random fields

In a classic Bayesian model (3.106-3.108),

p(zxly) o p(y|z)p(x), (3.117)

the prior distribution p(x) is independent of the observations y. Sometimes, however, it is
useful to modify our prior assumptions, say about the smoothness of the field we are trying
to estimate, in response to the sensed data. Whether this makes sense from a probability
viewpoint is something we discuss once we have explained the new model.

Consider the interactive image segmentation problem shown in Figure 3.61 (Boykov and
Funka-Lea 2006). In this application, the user draws foreground (red) and background (blue)
strokes, and the system then solves a binary MRF labeling problem to estimate the extent of
the foreground object. In addition to minimizing a data term, which measures the pointwise
similarity between pixel colors and the inferred region distributions (Section 5.5), the MRF

3.7 Global optimization 189

Figure 3.62 Graphical model for a conditional random field (CRF). The additional green
edges show how combinations of sensed data influence the smoothness in the underlying
MREF prior model, i.e., s;(¢,j) and s,(¢,) in (3.113) depend on adjacent d(<, j) values.
These additional links (factors) enable the smoothness to depend on the input data. However,
they make sampling from this MRF more complex.

is modified so that the smoothness terms s, (x,y) and s, (z,y) in Figure 3.56 and (3.113)
depend on the magnitude of the gradient between adjacent pixels.>

Since the smoothness term now depends on the data, Bayes’ Rule (3.117) no longer ap-
plies. Instead, we use a direct model for the posterior distribution p(z|y), whose negative log
likelihood can be written as

= ZVp(acp,y)+ Z Vop.g(Zp, g, Y), (3.118)
P (p,a)EN

using the notation introduced in (3.116). The resulting probability distribution is called a
conditional random field (CRF) and was first introduced to the computer vision field by Ku-
mar and Hebert (2003), based on earlier work in text modeling by Lafferty, McCallum, and
Pereira (2001).

Figure 3.62 shows a graphical model where the smoothness terms depend on the data
values. In this particular model, each smoothness term depends only on its adjacent pair of
data values, i.e., terms are of the form V,, ¢ (2, 24, Yp, Yq) in (3.118).

The idea of modifying smoothness terms in response to input data is not new. For ex-
ample, Boykov and Jolly (2001) used this idea for interactive segmentation, as shown in
Figure 3.61, and it is now widely used in image segmentation (Section 5.5) (Blake, Rother,

25 An alternative formulation that also uses detected edges to modulate the smoothness of a depth or motion field
and hence to integrate multiple lower level vision modules is presented by Poggio, Gamble, and Little (1988).

190 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

F(i+1,j+1)

Figure 3.63 Graphical model for a discriminative random field (DRF). The additional green
edges show how combinations of sensed data, e.g., d(i,j + 1), influence the data term for
f(i, 7). The generative model is therefore more complex, i.e., we cannot just apply a simple
function to the unknown variables and add noise.

Brown et al. 2004; Rother, Kolmogorov, and Blake 2004), denoising (Tappen, Liu, Freeman
et al. 2007), and object recognition (Section 14.4.3) (Winn and Shotton 2006; Shotton, Winn,
Rother et al. 2009).

In stereo matching, the idea of encouraging disparity discontinuities to coincide with
intensity edges goes back even further to the early days of optimization and MRF-based
algorithms (Poggio, Gamble, and Little 1988; Fua 1993; Bobick and Intille 1999; Boykov,
Veksler, and Zabih 2001) and is discussed in more detail in (Section 11.5).

In addition to using smoothness terms that adapt to the input data, Kumar and Hebert
(2003) also compute a neighborhood function over the input data for each V,(zp,y) term,
as illustrated in Figure 3.63, instead of using the classic unary MRF data term V,(xy, yp)
shown in Figure 3.56.2 Because such neighborhood functions can be thought of as dis-
criminant functions (a term widely used in machine learning (Bishop 2006)), they call the
resulting graphical model a discriminative random field (DRF). In their paper, Kumar and
Hebert (2006) show that DRFs outperform similar CRFs on a number of applications, such
as structure detection (Figure 3.64) and binary image denoising.

Here again, one could argue that previous stereo correspondence algorithms also look at
a neighborhood of input data, either explicitly, because they compute correlation measures
(Criminisi, Cross, Blake et al. 2006) as data terms, or implicitly, because even pixel-wise
disparity costs look at several pixels in either the left or right image (Barnard 1989; Boykov,
Veksler, and Zabih 2001).

26 Kumar and Hebert (2006) call the unary potentials Vi (zp, y) association potentials and the pairwise potentials
Vi,a(p, yq, y) interaction potentials.

3.7 Global optimization 191

Figure 3.64 Structure detection results using an MRF (left) and a DRF (right) (Kumar and
Hebert 2006) (©) 2006 Springer.

What, then are the advantages and disadvantages of using conditional or discriminative
random fields instead of MRFs?

Classic Bayesian inference (MRF) assumes that the prior distribution of the data is in-
dependent of the measurements. This makes a lot of sense: if you see a pair of sixes when
you first throw a pair of dice, it would be unwise to assume that they will always show up
thereafter. However, if after playing for a long time you detect a statistically significant bias,
you may want to adjust your prior. What CRFs do, in essence, is to select or modify the prior
model based on observed data. This can be viewed as making a partial inference over addi-
tional hidden variables or correlations between the unknowns (say, a label, depth, or clean
image) and the knowns (observed images).

In some cases, the CRF approach makes a lot of sense and is, in fact, the only plausi-
ble way to proceed. For example, in grayscale image colorization (Section 10.3.2) (Levin,
Lischinski, and Weiss 2004), the best way to transfer the continuity information from the
input grayscale image to the unknown color image is to modify local smoothness constraints.
Similarly, for simultaneous segmentation and recognition (Winn and Shotton 2006; Shotton,
Winn, Rother et al. 2009), it makes a lot of sense to permit strong color edges to influence
the semantic image label continuities.

In other cases, such as image denoising, the situation is more subtle. Using a non-
quadratic (robust) smoothness term as in (3.113) plays a qualitatively similar role to setting
the smoothness based on local gradient information in a Gaussian MRF (GMRF) (Tappen,
Liu, Freeman ef al. 2007). (In more recent work, Tanaka and Okutomi (2008) use a larger
neighborhood and full covariance matrix on a related Gaussian MRF.) The advantage of Gaus-
sian MRFs, when the smoothness can be correctly inferred, is that the resulting quadratic
energy can be minimized in a single step. However, for situations where the discontinuities
are not self-evident in the input data, such as for piecewise-smooth sparse data interpolation
(Blake and Zisserman 1987; Terzopoulos 1988), classic robust smoothness energy minimiza-

192 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

tion may be preferable. Thus, as with most computer vision algorithms, a careful analysis of
the problem at hand and desired robustness and computation constraints may be required to
choose the best technique.

Perhaps the biggest advantage of CRFs and DRFs, as argued by Kumar and Hebert (2006),
Tappen, Liu, Freeman et al. (2007) and Blake, Rother, Brown et al. (2004), is that learning the
model parameters is sometimes easier. While learning parameters in MRFs and their variants
is not a topic that we cover in this book, interested readers can find more details in recently
published articles (Kumar and Hebert 2006; Roth and Black 2007a; Tappen, Liu, Freeman et
al. 2007; Tappen 2007; Li and Huttenlocher 2008).

3.7.3 Application: Image restoration

In Section 3.4.4, we saw how two-dimensional linear and non-linear filters can be used to
remove noise or enhance sharpness in images. Sometimes, however, images are degraded by
larger problems, such as scratches and blotches (Kokaram 2004). In this case, Bayesian meth-
ods such as MRFs, which can model spatially varying per-pixel measurement noise, can be
used instead. An alternative is to use hole filling or inpainting techniques (Bertalmio, Sapiro,
Caselles et al. 2000; Bertalmio, Vese, Sapiro et al. 2003; Criminisi, Pérez, and Toyama 2004),
as discussed in Sections 5.1.4 and 10.5.1.

Figure 3.57 shows an example of image denoising and inpainting (hole filling) using a
Markov random field. The original image has been corrupted by noise and a portion of the
data has been removed. In this case, the loopy belief propagation algorithm computes a
slightly lower energy and also a smoother image than the alpha-expansion graph cut algo-
rithm.

3.8 Additional reading

If you are interested in exploring the topic of image processing in more depth, some popular
textbooks have been written by Lim (1990); Crane (1997); Gomes and Velho (1997); Jihne
(1997); Pratt (2007); Russ (2007); Burger and Burge (2008); Gonzales and Woods (2008).
The pre-eminent conference and journal in this field are the IEEE Conference on Image Pro-
cesssing and the IEEE Transactions on Image Processing.

For image compositing operators, the seminal reference is by Porter and Duff (1984)
while Blinn (1994a,b) provides a more detailed tutorial. For image compositing, Smith and
Blinn (1996) were the first to bring this topic to the attention of the graphics community,
while Wang and Cohen (2007a) provide a recent in-depth survey.

In the realm of linear filtering, Freeman and Adelson (1991) provide a great introduc-
tion to separable and steerable oriented band-pass filters, while Perona (1995) shows how to

3.8 Additional reading 193

approximate any filter as a sum of separable components.

The literature on non-linear filtering is quite wide and varied; it includes such topics as
bilateral filtering (Tomasi and Manduchi 1998; Durand and Dorsey 2002; Paris and Durand
2006; Chen, Paris, and Durand 2007; Paris, Kornprobst, Tumblin et al. 2008), related itera-
tive algorithms (Saint-Marc, Chen, and Medioni 1991; Nielsen, Florack, and Deriche 1997;
Black, Sapiro, Marimont et al. 1998; Weickert, ter Haar Romeny, and Viergever 1998; Weick-
ert 1998; Barash 2002; Scharr, Black, and Haussecker 2003; Barash and Comaniciu 2004),
and variational approaches (Chan, Osher, and Shen 2001; Tschumperlé and Deriche 2005;
Tschumperlé 2006; Kaftory, Schechner, and Zeevi 2007).

Good references to image morphology include (Haralick and Shapiro 1992, Section 5.2;
Bovik 2000, Section 2.2; Ritter and Wilson 2000, Section 7; Serra 1982; Serra and Vincent
1992; Yuille, Vincent, and Geiger 1992; Soille 2006).

The classic papers for image pyramids and pyramid blending are by Burt and Adelson
(1983a,b). Wavelets were first introduced to the computer vision community by Mallat (1989)
and good tutorial and review papers and books are available (Strang 1989; Simoncelli and
Adelson 1990b; Rioul and Vetterli 1991; Chui 1992; Meyer 1993; Sweldens 1997). Wavelets
are widely used in the computer graphics community to perform multi-resolution geomet-
ric processing (Stollnitz, DeRose, and Salesin 1996) and have been used in computer vision
for similar applications (Szeliski 1990b; Pentland 1994; Gortler and Cohen 1995; Yaou and
Chang 1994; Lai and Vemuri 1997; Szeliski 2006b), as well as for multi-scale oriented filter-
ing (Simoncelli, Freeman, Adelson ez al. 1992) and denoising (Portilla, Strela, Wainwright et
al. 2003).

While image pyramids (Section 3.5.3) are usually constructed using linear filtering op-
erators, some recent work has started investigating non-linear filters, since these can better
preserve details and other salient features. Some representative papers in the computer vision
literature are by Gluckman (2006a,b); Lyu and Simoncelli (2008) and in computational pho-
tography by Bae, Paris, and Durand (2006); Farbman, Fattal, Lischinski ez al. (2008); Fattal
(2009).

High-quality algorithms for image warping and resampling are covered both in the im-
age processing literature (Wolberg 1990; Dodgson 1992; Gomes, Darsa, Costa et al. 1999;
Szeliski, Winder, and Uyttendaele 2010) and in computer graphics (Williams 1983; Heckbert
1986; Barkans 1997; Akenine-Moller and Haines 2002), where they go under the name of
texture mapping. Combination of image warping and image blending techniques are used to
enable morphing between images, which is covered in a series of seminal papers and books
(Beier and Neely 1992; Gomes, Darsa, Costa et al. 1999).

The regularization approach to computer vision problems was first introduced to the vi-
sion community by Poggio, Torre, and Koch (1985) and Terzopoulos (1986a,b, 1988) and
continues to be a popular framework for formulating and solving low-level vision problems

194 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(Ju, Black, and Jepson 1996; Nielsen, Florack, and Deriche 1997; Nordstrom 1990; Brox,
Bruhn, Papenberg et al. 2004; Levin, Lischinski, and Weiss 2008). More detailed mathe-
matical treatment and additional applications can be found in the applied mathematics and
statistics literature (Tikhonov and Arsenin 1977; Engl, Hanke, and Neubauer 1996).

The literature on Markov random fields is truly immense, with publications in related
fields such as optimization and control theory of which few vision practitioners are even
aware. A good guide to the latest techniques is the book edited by Blake, Kohli, and Rother
(2010). Other recent articles that contain nice literature reviews or experimental compar-
isons include (Boykov and Funka-Lea 2006; Szeliski, Zabih, Scharstein ez al. 2008; Kumar,
Veksler, and Torr 2010).

The seminal paper on Markov random fields is the work of Geman and Geman (1984),
who introduced this formalism to computer vision researchers and also introduced the no-
tion of line processes, additional binary variables that control whether smoothness penalties
are enforced or not. Black and Rangarajan (1996) showed how independent line processes
could be replaced with robust pairwise potentials; Boykov, Veksler, and Zabih (2001) devel-
oped iterative binary, graph cut algorithms for optimizing multi-label MRFs; Kolmogorov
and Zabih (2004) characterized the class of binary energy potentials required for these tech-
niques to work; and Freeman, Pasztor, and Carmichael (2000) popularized the use of loopy
belief propagation for MRF inference. Many more additional references can be found in
Sections 3.7.2 and 5.5, and Appendix B.5.

3.9 Exercises

Ex 3.1: Color balance Write a simple application to change the color balance of an image
by multiplying each color value by a different user-specified constant. If you want to get
fancy, you can make this application interactive, with sliders.

1. Do you get different results if you take out the gamma transformation before or after
doing the multiplication? Why or why not?

2. Take the same picture with your digital camera using different color balance settings
(most cameras control the color balance from one of the menus). Can you recover what
the color balance ratios are between the different settings? You may need to put your
camera on a tripod and align the images manually or automatically to make this work.
Alternatively, use a color checker chart (Figure 10.3b), as discussed in Sections 2.3 and
10.1.1.

3. If you have access to the RAW image for the camera, perform the demosaicing yourself
(Section 10.3.1) or downsample the image resolution to get a “true” RGB image. Does

3.9 Exercises 195

your camera perform a simple linear mapping between RAW values and the color-
balanced values in a JPEG? Some high-end cameras have a RAW+JPEG mode, which
makes this comparison much easier.

4. Can you think of any reason why you might want to perform a color twist (Sec-
tion 3.1.2) on the images? See also Exercise 2.9 for some related ideas.

Ex 3.2: Compositing and reflections Section 3.1.3 describes the process of compositing
an alpha-matted image on top of another. Answer the following questions and optionally
validate them experimentally:

1. Most captured images have gamma correction applied to them. Does this invalidate the
basic compositing equation (3.8); if so, how should it be fixed?

2. The additive (pure reflection) model may have limitations. What happens if the glass is
tinted, especially to a non-gray hue? How about if the glass is dirty or smudged? How
could you model wavy glass or other kinds of refractive objects?

Ex 3.3: Blue screen matting Set up a blue or green background, e.g., by buying a large
piece of colored posterboard. Take a picture of the empty background, and then of the back-
ground with a new object in front of it. Pull the matte using the difference between each
colored pixel and its assumed corresponding background pixel, using one of the techniques
described in Section 3.1.3) or by Smith and Blinn (1996).

Ex 3.4: Difference keying Implement a difference keying algorithm (see Section 3.1.3)
(Toyama, Krumm, Brumitt ez al. 1999), consisting of the following steps:

1. Compute the mean and variance (or median and robust variance) at each pixel in an
“empty” video sequence.

2. For each new frame, classify each pixel as foreground or background (set the back-
ground pixels to RGBA=0).

3. (Optional) Compute the alpha channel and composite over a new background.

4. (Optional) Clean up the image using morphology (Section 3.3.1), label the connected
components (Section 3.3.4), compute their centroids, and track them from frame to
frame. Use this to build a “people counter”.

Ex 3.5: Photo effects Write a variety of photo enhancement or effects filters: contrast, so-
larization (quantization), etc. Which ones are useful (perform sensible corrections) and which
ones are more creative (create unusual images)?

196 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Ex 3.6: Histogram equalization Compute the gray level (luminance) histogram for an im-
age and equalize it so that the tones look better (and the image is less sensitive to exposure
settings). You may want to use the following steps:

1. Convert the color image to luminance (Section 3.1.2).

2. Compute the histogram, the cumulative distribution, and the compensation transfer
function (Section 3.1.4).

3. (Optional) Try to increase the “punch” in the image by ensuring that a certain fraction
of pixels (say, 5%) are mapped to pure black and white.

4. (Optional) Limit the local gain f'(I) in the transfer function. One way to do this is to
limit f(I) < I or f/'(I) < ~ while performing the accumulation (3.9), keeping any
unaccumulated values “in reserve”. (I’ll let you figure out the exact details.)

5. Compensate the luminance channel through the lookup table and re-generate the color
image using color ratios (2.116).

6. (Optional) Color values that are clipped in the original image, i.e., have one or more
saturated color channels, may appear unnatural when remapped to a non-clipped value.
Extend your algorithm to handle this case in some useful way.

Ex 3.7: Local histogram equalization Compute the gray level (luminance) histograms for
each patch, but add to vertices based on distance (a spline).

1. Build on Exercise 3.6 (luminance computation).

2. Distribute values (counts) to adjacent vertices (bilinear).
3. Convert to CDF (look-up functions).

4. (Optional) Use low-pass filtering of CDFs.

5. Interpolate adjacent CDFs for final lookup.

Ex 3.8: Padding for neighborhood operations Write down the formulas for computing
the padded pixel values f(i, j) as a function of the original pixel values f(k, 1) and the image
width and height (M, N) for each of the padding modes shown in Figure 3.13. For example,
for replication (clamping),

P k = max(0, min(M — 1,7)),
) = k? l) . .
J0g) = Jk1) [= max(0, min(N — 1, j)),
(Hint: you may want to use the min, max, mod, and absolute value operators in addition to
the regular arithmetic operators.)

3.9 Exercises 197

e Describe in more detail the advantages and disadvantages of these various modes.

e (Optional) Check what your graphics card does by drawing a texture-mapped rectangle
where the texture coordinates lie beyond the [0.0, 1.0] range and using different texture
clamping modes.

Ex 3.9: Separable filters Implement convolution with a separable kernel. The input should
be a grayscale or color image along with the horizontal and vertical kernels. Make sure
you support the padding mechanisms developed in the previous exercise. You will need this
functionality for some of the later exercises. If you already have access to separable filtering
in an image processing package you are using (such as IPL), skip this exercise.

e (Optional) Use Pietro Perona’s (1995) technique to approximate convolution as a sum
of a number of separable kernels. Let the user specify the number of kernels and report
back some sensible metric of the approximation fidelity.

Ex 3.10: Discrete Gaussian filters Discuss the following issues with implementing a dis-
crete Gaussian filter:

e If you just sample the equation of a continuous Gaussian filter at discrete locations,
will you get the desired properties, e.g., will the coefficients sum up to 0? Similarly, if
you sample a derivative of a Gaussian, do the samples sum up to O or have vanishing
higher-order moments?

e Would it be preferable to take the original signal, interpolate it with a sinc, blur with a
continuous Gaussian, then pre-filter with a sinc before re-sampling? Is there a simpler
way to do this in the frequency domain?

e Would it make more sense to produce a Gaussian frequency response in the Fourier
domain and to then take an inverse FFT to obtain a discrete filter?

e How does truncation of the filter change its frequency response? Does it introduce any
additional artifacts?

o Are the resulting two-dimensional filters as rotationally invariant as their continuous
analogs? Is there some way to improve this? In fact, can any 2D discrete (separable or
non-separable) filter be truly rotationally invariant?

Ex 3.11: Sharpening, blur, and noise removal Implement some softening, sharpening, and
non-linear diffusion (selective sharpening or noise removal) filters, such as Gaussian, median,
and bilateral (Section 3.3.1), as discussed in Section 3.4.4.

Take blurry or noisy images (shooting in low light is a good way to get both) and try to
improve their appearance and legibility.

198 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Ex 3.12: Steerable filters Implement Freeman and Adelson’s (1991) steerable filter algo-
rithm. The input should be a grayscale or color image and the output should be a multi-banded
image consisting of G?O and G?OO. The coefficients for the filters can be found in the paper
by Freeman and Adelson (1991).

Test the various order filters on a number of images of your choice and see if you can
reliably find corner and intersection features. These filters will be quite useful later to detect
elongated structures, such as lines (Section 4.3).

Ex 3.13: Distance transform Implement some (raster-scan) algorithms for city block and
Euclidean distance transforms. Can you do it without peeking at the literature (Danielsson
1980; Borgefors 1986)? If so, what problems did you come across and resolve?

Later on, you can use the distance functions you compute to perform feathering during
image stitching (Section 9.3.2).

Ex 3.14: Connected components Implement one of the connected component algorithms
from Section 3.3.4 or Section 2.3 from Haralick and Shapiro’s book (1992) and discuss its
computational complexity.

e Threshold or quantize an image to obtain a variety of input labels and then compute the
area statistics for the regions that you find.

e Use the connected components that you have found to track or match regions in differ-
ent images or video frames.

Ex 3.15: Fourier transform Prove the properties of the Fourier transform listed in Ta-
ble 3.1 and derive the formulas for the Fourier transforms listed in Tables 3.2 and 3.3. These
exercises are very useful if you want to become comfortable working with Fourier transforms,
which is a very useful skill when analyzing and designing the behavior and efficiency of many
computer vision algorithms.

Ex 3.16: Wiener filtering Estimate the frequency spectrum of your personal photo collec-
tion and use it to perform Wiener filtering on a few images with varying degrees of noise.

1. Collect a few hundred of your images by re-scaling them to fit within a 512 x 512
window and cropping them.

2. Take their Fourier transforms, throw away the phase information, and average together
all of the spectra.

3. Pick two of your favorite images and add varying amounts of Gaussian noise, o, €
{1,2,5,10,20} gray levels.

3.9 Exercises 199

4,

For each combination of image and noise, determine by eye which width of a Gaussian
blurring filter o5 gives the best denoised result. You will have to make a subjective
decision between sharpness and noise.

. Compute the Wiener filtered version of all the noised images and compare them against

your hand-tuned Gaussian-smoothed images.

(Optional) Do your image spectra have a lot of energy concentrated along the horizontal
and vertical axes (f, = 0 and f, = 0)? Can you think of an explanation for this? Does
rotating your image samples by 45° move this energy to the diagonals? If not, could it
be due to edge effects in the Fourier transform? Can you suggest some techniques for
reducing such effects?

Ex 3.17: Deblurring using Wiener filtering Use Wiener filtering to deblur some images.

1.

2.

Modify the Wiener filter derivation (3.66-3.74) to incorporate blur (3.75).

Discuss the resulting Wiener filter in terms of its noise suppression and frequency
boosting characteristics.

Assuming that the blur kernel is Gaussian and the image spectrum follows an inverse
frequency law, compute the frequency response of the Wiener filter, and compare it to
the unsharp mask.

Synthetically blur two of your sample images with Gaussian blur kernels of different
radii, add noise, and then perform Wiener filtering.

Repeat the above experiment with a “pillbox” (disc) blurring kernel, which is charac-
teristic of a finite aperture lens (Section 2.2.3). Compare these results to Gaussian blur
kernels (be sure to inspect your frequency plots).

It has been suggested that regular apertures are anathema to de-blurring because they
introduce zeros in the sensed frequency spectrum (Veeraraghavan, Raskar, Agrawal et
al. 2007). Show that this is indeed an issue if no prior model is assumed for the signal,
i.e., P11, If a reasonable power spectrum is assumed, is this still a problem (do we
still get banding or ringing artifacts)?

Ex 3.18: High-quality image resampling Implement several of the low-pass filters pre-

sented in Section 3.5.2 and also the discussion of the windowed sinc shown in Table 3.2 and
Figure 3.29. Feel free to implement other filters (Wolberg 1990; Unser 1999).
Apply your filters to continuously resize an image, both magnifying (interpolating) and

minifying (decimating) it; compare the resulting animations for several filters. Use both a

200 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

Figure 3.65 Sample images for testing the quality of resampling algorithms: (a) a synthetic
chirp; (b) and (c) some high-frequency images from the image compression community.

synthetic chirp image (Figure 3.65a) and natural images with lots of high-frequency detail
(Figure 3.65b-c).”’
You may find it helpful to write a simple visualization program that continuously plays the
animations for two or more filters at once and that let you “blink” between different results.
Discuss the merits and deficiencies of each filter, as well as its tradeoff between speed and
quality.

Ex 3.19: Pyramids Construct an image pyramid. The inputs should be a grayscale or color
image, a separable filter kernel, and the number of desired levels. Implement at least the
following kernels:

e 2 x 2 block filtering;
e Burt and Adelson’s binomial kernel 1/16(1,4,6,4,1) (Burt and Adelson 1983a);
e a high-quality seven- or nine-tap filter.

Compare the visual quality of the various decimation filters. Also, shift your input image by
1 to 4 pixels and compare the resulting decimated (quarter size) image sequence.

Ex 3.20: Pyramid blending Write a program that takes as input two color images and a
binary mask image and produces the Laplacian pyramid blend of the two images.

1. Construct the Laplacian pyramid for each image.

2. Construct the Gaussian pyramid for the two mask images (the input image and its
complement).

27 These particular images are available on the book’s Web site.

3.9 Exercises 201

3. Multiply each Laplacian image by its corresponding mask and sum the images (see
Figure 3.43).

4. Reconstruct the final image from the blended Laplacian pyramid.

Generalize your algorithm to input n images and a label image with values 1. ..n (the value
0 can be reserved for “no input”). Discuss whether the weighted summation stage (step 3)
needs to keep track of the total weight for renormalization, or whether the math just works
out. Use your algorithm either to blend two differently exposed image (to avoid under- and
over-exposed regions) or to make a creative blend of two different scenes.

Ex 3.21: Wavelet construction and applications Implement one of the wavelet families
described in Section 3.5.4 or by Simoncelli and Adelson (1990b), as well as the basic Lapla-
cian pyramid (Exercise 3.19). Apply the resulting representations to one of the following two
tasks:

e Compression: Compute the entropy in each band for the different wavelet implemen-
tations, assuming a given quantization level (say, Y4 gray level, to keep the rounding
error acceptable). Quantize the wavelet coefficients and reconstruct the original im-
ages. Which technique performs better? (See (Simoncelli and Adelson 1990b) or any
of the multitude of wavelet compression papers for some typical results.)

e Denoising. After computing the wavelets, suppress small values using coring, i.e., set
small values to zero using a piecewise linear or other C° function. Compare the results
of your denoising using different wavelet and pyramid representations.

Ex 3.22: Parametric image warping Write the code to do affine and perspective image
warps (optionally bilinear as well). Try a variety of interpolants and report on their visual
quality. In particular, discuss the following:

e In a MIP-map, selecting only the coarser level adjacent to the computed fractional
level will produce a blurrier image, while selecting the finer level will lead to aliasing.
Explain why this is so and discuss whether blending an aliased and a blurred image
(tri-linear MIP-mapping) is a good idea.

e When the ratio of the horizontal and vertical resampling rates becomes very different
(anisotropic), the MIP-map performs even worse. Suggest some approaches to reduce
such problems.

Ex 3.23: Local image warping Open an image and deform its appearance in one of the
following ways:

202

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

. Click on a number of pixels and move (drag) them to new locations. Interpolate the

resulting sparse displacement field to obtain a dense motion field (Sections 3.6.2 and
3.5.1).

Draw a number of lines in the image. Move the endpoints of the lines to specify their
new positions and use the Beier—Neely interpolation algorithm (Beier and Neely 1992),
discussed in Section 3.6.2, to get a dense motion field.

Overlay a spline control grid and move one grid point at a time (optionally select the
level of the deformation).

Have a dense per-pixel flow field and use a soft “paintbrush” to design a horizontal and
vertical velocity field.

(Optional): Prove whether the Beier—Neely warp does or does not reduce to a sparse
point-based deformation as the line segments become shorter (reduce to points).

Ex 3.24: Forward warping Given a displacement field from the previous exercise, write a
forward warping algorithm:

1.

2.

3.

Write a forward warper using splatting, either nearest neighbor or soft accumulation
(Section 3.6.1).

Write a two-pass algorithm, which forward warps the displacement field, fills in small
holes, and then uses inverse warping (Shade, Gortler, He et al. 1998).

Compare the quality of these two algorithms.

Ex 3.25: Feature-based morphing Extend the warping code you wrote in Exercise 3.23

to import two different images and specify correspondences (point, line, or mesh-based) be-

tween the two images.

1.

2.

Create a morph by partially warping the images towards each other and cross-dissolving
(Section 3.6.3).

Try using your morphing algorithm to perform an image rotation and discuss whether
it behaves the way you want it to.

Ex 3.26: 2D image editor Extend the program you wrote in Exercise 2.2 to import images

and let you create a “collage” of pictures. You should implement the following steps:

1.

Open up a new image (in a separate window).

3.9 Exercises 203

Figure 3.66 There is a faint image of a rainbow visible in the right hand side of this picture.
Can you think of a way to enhance it (Exercise 3.29)?

2. Shift drag (rubber-band) to crop a subregion (or select whole image).
3. Paste into the current canvas.

4. Select the deformation mode (motion model): translation, rigid, similarity, affine, or
perspective.

5. Drag any corner of the outline to change its transformation.

6. (Optional) Change the relative ordering of the images and which image is currently
being manipulated.

The user should see the composition of the various images’ pieces on top of each other.

This exercise should be built on the image transformation classes supported in the soft-
ware library. Persistence of the created representation (save and load) should also be sup-
ported (for each image, save its transformation).

Ex 3.27: 3D texture-mapped viewer Extend the viewer you created in Exercise 2.3 to in-
clude texture-mapped polygon rendering. Augment each polygon with (u, v, w) coordinates
into an image.

Ex 3.28: Image denoising Implement at least two of the various image denoising tech-
niques described in this chapter and compare them on both synthetically noised image se-
quences and real-world (low-light) sequences. Does the performance of the algorithm de-
pend on the correct choice of noise level estimate? Can you draw any conclusions as to
which techniques work better?

204 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Ex 3.29: Rainbow enhancer—challenging Take a picture containing a rainbow, such as
Figure 3.66, and enhance the strength (saturation) of the rainbow.

1. Draw an arc in the image delineating the extent of the rainbow.

2. Fit an additive rainbow function (explain why it is additive) to this arc (it is best to work
with linearized pixel values), using the spectrum as the cross section, and estimating
the width of the arc and the amount of color being added. This is the trickiest part of
the problem, as you need to tease apart the (low-frequency) rainbow pattern and the
natural image hiding behind it.

3. Amplify the rainbow signal and add it back into the image, re-applying the gamma
function if necessary to produce the final image.

Ex 3.30: Image deblocking—challenging Now that you have some good techniques to
distinguish signal from noise, develop a technique to remove the blocking artifacts that occur
with JPEG at high compression settings (Section 2.3.3). Your technique can be as simple
as looking for unexpected edges along block boundaries, to looking at the quantization step
as a projection of a convex region of the transform coefficient space onto the corresponding
quantized values.

1. Does the knowledge of the compression factor, which is available in the JPEG header
information, help you perform better deblocking?

2. Because the quantization occurs in the DCT transformed YCbCr space (2.115), it may
be preferable to perform the analysis in this space. On the other hand, image priors
make more sense in an RGB space (or do they?). Decide how you will approach this
dichotomy and discuss your choice.

3. While you are at it, since the YCbCr conversion is followed by a chrominance subsam-
pling stage (before the DCT), see if you can restore some of the lost high-frequency
chrominance signal using one of the better restoration techniques discussed in this
chapter.

4. If your camera has a RAW + JPEG mode, how close can you come to the noise-free
true pixel values? (This suggestion may not be that useful, since cameras generally use
reasonably high quality settings for their RAW + JPEG models.)

Ex 3.31: Inference in de-blurring—challenging Write down the graphical model corre-
sponding to Figure 3.59 for a non-blind image deblurring problem, i.e., one where the blur
kernel is known ahead of time.

What kind of efficient inference (optimization) algorithms can you think of for solving
such problems?

4.1

4.2

4.3

4.4
4.5

Chapter 4

Feature detection and matching

Pointsandpatches 207
4.1.1 Featuredetectors 209
4.1.2 Feature descriptors oot e e 222
4.1.3 Featurematching 225
4.1.4 Featuretracking 235
4.1.5 Application: Performance-driven animation 237
Edges o 238
42.1 Edgedetection 238
422 Edgelinking 244
423 Application: Edge editing and enhancement 249
Lines o e 250
4.3.1 Successive approximation e . 250
432 Houghtransforms. oL 251
4.3.3 Vanishingpoints 254
4.3.4 Application: Rectangle detection 257
Additional reading 257

Exercises e 259

206 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.1 A variety of feature detectors and descriptors can be used to analyze, describe and
match images: (a) point-like interest operators (Brown, Szeliski, and Winder 2005) (©) 2005
IEEE; (b) region-like interest operators (Matas, Chum, Urban et al. 2004) (©) 2004 Elsevier;
(c) edges (Elder and Goldberg 2001) (© 2001 IEEE; (d) straight lines (Sinha, Steedly, Szeliski
et al. 2008) (© 2008 ACM.

4.1 Points and patches 207

Feature detection and matching are an essential component of many computer vision appli-
cations. Consider the two pairs of images shown in Figure 4.2. For the first pair, we may
wish to align the two images so that they can be seamlessly stitched into a composite mosaic
(Chapter 9). For the second pair, we may wish to establish a dense set of correspondences so
that a 3D model can be constructed or an in-between view can be generated (Chapter 11). In
either case, what kinds of features should you detect and then match in order to establish such
an alignment or set of correspondences? Think about this for a few moments before reading
on.

The first kind of feature that you may notice are specific locations in the images, such as
mountain peaks, building corners, doorways, or interestingly shaped patches of snow. These
kinds of localized feature are often called keypoint features or interest points (or even corners)
and are often described by the appearance of patches of pixels surrounding the point location
(Section 4.1). Another class of important features are edges, e.g., the profile of mountains
against the sky, (Section 4.2). These kinds of features can be matched based on their orien-
tation and local appearance (edge profiles) and can also be good indicators of object bound-
aries and occlusion events in image sequences. Edges can be grouped into longer curves and
straight line segments, which can be directly matched or analyzed to find vanishing points
and hence internal and external camera parameters (Section 4.3).

In this chapter, we describe some practical approaches to detecting such features and
also discuss how feature correspondences can be established across different images. Point
features are now used in such a wide variety of applications that it is good practice to read and
implement some of the algorithms from (Section 4.1). Edges and lines provide information
that is complementary to both keypoint and region-based descriptors and are well-suited to
describing object boundaries and man-made objects. These alternative descriptors, while
extremely useful, can be skipped in a short introductory course.

4.1 Points and patches

Point features can be used to find a sparse set of corresponding locations in different im-
ages, often as a pre-cursor to computing camera pose (Chapter 7), which is a prerequisite for
computing a denser set of correspondences using stereo matching (Chapter 11). Such corre-
spondences can also be used to align different images, e.g., when stitching image mosaics or
performing video stabilization (Chapter 9). They are also used extensively to perform object
instance and category recognition (Sections 14.3 and 14.4). A key advantage of keypoints
is that they permit matching even in the presence of clutter (occlusion) and large scale and
orientation changes.

Feature-based correspondence techniques have been used since the early days of stereo

208 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.2 Two pairs of images to be matched. What kinds of feature might one use to
establish a set of correspondences between these images?

matching (Hannah 1974; Moravec 1983; Hannah 1988) and have more recently gained pop-
ularity for image-stitching applications (Zoghlami, Faugeras, and Deriche 1997; Brown and
Lowe 2007) as well as fully automated 3D modeling (Beardsley, Torr, and Zisserman 1996;
Schaffalitzky and Zisserman 2002; Brown and Lowe 2003; Snavely, Seitz, and Szeliski 2006).

There are two main approaches to finding feature points and their correspondences. The
first is to find features in one image that can be accurately fracked using a local search tech-
nique, such as correlation or least squares (Section 4.1.4). The second is to independently
detect features in all the images under consideration and then match features based on their
local appearance (Section 4.1.3). The former approach is more suitable when images are
taken from nearby viewpoints or in rapid succession (e.g., video sequences), while the lat-
ter is more suitable when a large amount of motion or appearance change is expected, e.g.,
in stitching together panoramas (Brown and Lowe 2007), establishing correspondences in
wide baseline stereo (Schaffalitzky and Zisserman 2002), or performing object recognition
(Fergus, Perona, and Zisserman 2007).

In this section, we split the keypoint detection and matching pipeline into four separate
stages. During the feature detection (extraction) stage (Section 4.1.1), each image is searched
for locations that are likely to match well in other images. At the feature description stage
(Section 4.1.2), each region around detected keypoint locations is converted into a more com-
pact and stable (invariant) descriptor that can be matched against other descriptors. The

4.1 Points and patches 209

Figure 4.3 Image pairs with extracted patches below. Notice how some patches can be
localized or matched with higher accuracy than others.

feature matching stage (Section 4.1.3) efficiently searches for likely matching candidates in
other images. The feature tracking stage (Section 4.1.4) is an alternative to the third stage
that only searches a small neighborhood around each detected feature and is therefore more
suitable for video processing.

A wonderful example of all of these stages can be found in David Lowe’s (2004) paper,
which describes the development and refinement of his Scale Invariant Feature Transform
(SIFT). Comprehensive descriptions of alternative techniques can be found in a series of
survey and evaluation papers covering both feature detection (Schmid, Mohr, and Bauck-
hage 2000; Mikolajczyk, Tuytelaars, Schmid ef al. 2005; Tuytelaars and Mikolajczyk 2007)
and feature descriptors (Mikolajczyk and Schmid 2005). Shi and Tomasi (1994) and Triggs
(2004) also provide nice reviews of feature detection techniques.

4.1.1 Feature detectors

How can we find image locations where we can reliably find correspondences with other
images, i.e., what are good features to track (Shi and Tomasi 1994; Triggs 2004)? Look again
at the image pair shown in Figure 4.3 and at the three sample patches to see how well they
might be matched or tracked. As you may notice, textureless patches are nearly impossible
to localize. Patches with large contrast changes (gradients) are easier to localize, although
straight line segments at a single orientation suffer from the aperture problem (Horn and
Schunck 1981; Lucas and Kanade 1981; Anandan 1989), i.e., it is only possible to align
the patches along the direction normal to the edge direction (Figure 4.4b). Patches with

210 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b) (c)

Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like”) flow;
(b) classic aperture problem (barber-pole illusion); (c) textureless region. The two images I
(yellow) and I; (red) are overlaid. The red vector u indicates the displacement between the
patch centers and the w(x;) weighting function (patch window) is shown as a dark circle.

gradients in at least two (significantly) different orientations are the easiest to localize, as
shown schematically in Figure 4.4a.

These intuitions can be formalized by looking at the simplest possible matching criterion
for comparing two image patches, i.e., their (weighted) summed square difference,

Bwssp(u) = Y w(@;)[(i + u) — Io(z)], 4.1
i
where I and I; are the two images being compared, u = (u, v) is the displacement vector,
w(x) is a spatially varying weighting (or window) function, and the summation ¢ is over all
the pixels in the patch. Note that this is the same formulation we later use to estimate motion
between complete images (Section 8.1).

When performing feature detection, we do not know which other image locations the
feature will end up being matched against. Therefore, we can only compute how stable this
metric is with respect to small variations in position Au by comparing an image patch against
itself, which is known as an auto-correlation function or surface

Eac(Au) =Y " w(x:)[lo(z; + Au) — Ip(x;)]” (4.2)
(Figure 4.5).! Note how the auto-correlation surface for the textured flower bed (Figure 4.5b
and the red cross in the lower right quadrant of Figure 4.5a) exhibits a strong minimum,
indicating that it can be well localized. The correlation surface corresponding to the roof
edge (Figure 4.5c) has a strong ambiguity along one direction, while the correlation surface
corresponding to the cloud region (Figure 4.5d) has no stable minimum.

! Strictly speaking, a correlation is the product of two patches (3.12); I'm using the term here in a more qualitative
sense. The weighted sum of squared differences is often called an SSD surface (Section 8.1).

4.1 Points and patches 211

(b) (©) (d)

Figure 4.5 Three auto-correlation surfaces Fac(Awu) shown as both grayscale images and
surface plots: (a) The original image is marked with three red crosses to denote where the
auto-correlation surfaces were computed; (b) this patch is from the flower bed (good unique
minimum); (c) this patch is from the roof edge (one-dimensional aperture problem); and (d)
this patch is from the cloud (no good peak). Each grid point in figures b—d is one value of
Au.

212 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Using a Taylor Series expansion of the image function Iy (x; + Aw) = Iy(x;)+VIp(x;)-
Aw (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximate the auto-correlation

surface as
Exc(Au) = Z w(@)[Io(xi + Au) — Io(z;))? (4.3)
=~ Z w(a:l)[lo(acl) + Vig(x;) - Au — Io(il:i)]2 “4.4)
= AulAAu, (4.6)
where oL ol
_ (L0 YR0N
Vio() = (G 7)) @7

is the image gradient at x;. This gradient can be computed using a variety of techniques
(Schmid, Mohr, and Bauckhage 2000). The classic “Harris” detector (Harris and Stephens
1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with o = 1).

The auto-correlation matrix A can be written as

2 LI,]

4.8
1.1, IS (“48)

A =wx [
where we have replaced the weighted summations with discrete convolutions with the weight-
ing kernel w. This matrix can be interpreted as a tensor (multiband) image, where the outer
products of the gradients VI are convolved with a weighting function w to provide a per-pixel
estimate of the local (quadratic) shape of the auto-correlation function.

As first shown by Anandan (1984; 1989) and further discussed in Section 8.1.3 and (8.44),
the inverse of the matrix A provides a lower bound on the uncertainty in the location of a
matching patch. It is therefore a useful indicator of which patches can be reliably matched.
The easiest way to visualize and reason about this uncertainty is to perform an eigenvalue
analysis of the auto-correlation matrix A, which produces two eigenvalues (Ao, A1) and two
eigenvector directions (Figure 4.6). Since the larger uncertainty depends on the smaller eigen-
value, i.e., Ay 1/ 2, it makes sense to find maxima in the smaller eigenvalue to locate good
features to track (Shi and Tomasi 1994).

Forstner—-Harris. While Anandan and Lucas and Kanade (1981) were the first to analyze
the uncertainty structure of the auto-correlation matrix, they did so in the context of asso-
ciating certainties with optic flow measurements. Forstner (1986) and Harris and Stephens

4.1 Points and patches 213

direction of the
fastest change

direction of the
slowest change

Figure 4.6 Uncertainty ellipse corresponding to an eigenvalue analysis of the auto-
correlation matrix A.

(1988) were the first to propose using local maxima in rotationally invariant scalar measures
derived from the auto-correlation matrix to locate keypoints for the purpose of sparse feature
matching. (Schmid, Mohr, and Bauckhage (2000); Triggs (2004) give more detailed histori-
cal reviews of feature detection algorithms.) Both of these techniques also proposed using a
Gaussian weighting window instead of the previously used square patches, which makes the
detector response insensitive to in-plane image rotations.

The minimum eigenvalue Ao (Shi and Tomasi 1994) is not the only quantity that can be
used to find keypoints. A simpler quantity, proposed by Harris and Stephens (1988), is

det(A) — a trace(A)? = Mg — a(Ng + \1)? 4.9)

with o« = 0.06. Unlike eigenvalue analysis, this quantity does not require the use of square
roots and yet is still rotationally invariant and also downweights edge-like features where
A1 > Ao. Triggs (2004) suggests using the quantity

)\0 — Oz>\1 (410)

(say, with a = 0.05), which also reduces the response at 1D edges, where aliasing errors
sometimes inflate the smaller eigenvalue. He also shows how the basic 2 x 2 Hessian can be
extended to parametric motions to detect points that are also accurately localizable in scale
and rotation. Brown, Szeliski, and Winder (2005), on the other hand, use the harmonic mean,

detA_ AoA1
rA)\O"’Al,

@11

which is a smoother function in the region where Ao ~ A;. Figure 4.7 shows isocontours
of the various interest point operators, from which we can see how the two eigenvalues are
blended to determine the final interest value.

214 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

—— Harris
— — ~ Harmonic mean
— Shi-Tomasi

Figure 4.7 Isocontours of popular keypoint detection functions (Brown, Szeliski, and

Winder 2004). Each detector looks for points where the eigenvalues Ay, A\; of A =
w * VIVIT are both large.

. Compute the horizontal and vertical derivatives of the image I, and I, by con-
volving the original image with derivatives of Gaussians (Section 3.2.3).

. Compute the three images corresponding to the outer products of these gradients.
(The matrix A is symmetric, so only three entries are needed.)

3. Convolve each of these images with a larger Gaussian.
. Compute a scalar interest measure using one of the formulas discussed above.

Find local maxima above a certain threshold and report them as detected feature
point locations.

Algorithm 4.1 Outline of a basic feature detection algorithm.

4.1 Points and patches 215

(b)

Figure 4.8 Interest operator responses: (a) Sample image, (b) Harris response, and (c) DoG
response. The circle sizes and colors indicate the scale at which each interest point was
detected. Notice how the two detectors tend to respond at complementary locations.

The steps in the basic auto-correlation-based keypoint detector are summarized in Algo-
rithm 4.1. Figure 4.8 shows the resulting interest operator responses for the classic Harris
detector as well as the difference of Gaussian (DoG) detector discussed below.

Adaptive non-maximal suppression (ANMS). While most feature detectors simply look
for local maxima in the interest function, this can lead to an uneven distribution of feature
points across the image, e.g., points will be denser in regions of higher contrast. To mitigate
this problem, Brown, Szeliski, and Winder (2005) only detect features that are both local
maxima and whose response value is significantly (10%) greater than that of all of its neigh-
bors within a radius r (Figure 4.9c—d). They devise an efficient way to associate suppression
radii with all local maxima by first sorting them by their response strength and then creating
a second list sorted by decreasing suppression radius (Brown, Szeliski, and Winder 2005).
Figure 4.9 shows a qualitative comparison of selecting the top n features and using ANMS.

Measuring repeatability. Given the large number of feature detectors that have been de-
veloped in computer vision, how can we decide which ones to use? Schmid, Mohr, and
Bauckhage (2000) were the first to propose measuring the repeatability of feature detectors,
which they define as the frequency with which keypoints detected in one image are found
within € (say, € = 1.5) pixels of the corresponding location in a transformed image. In their
paper, they transform their planar images by applying rotations, scale changes, illumination
changes, viewpoint changes, and adding noise. They also measure the information content
available at each detected feature point, which they define as the entropy of a set of rotation-
ally invariant local grayscale descriptors. Among the techniques they survey, they find that
the improved (Gaussian derivative) version of the Harris operator with o4 = 1 (scale of the
derivative Gaussian) and o; = 2 (scale of the integration Gaussian) works best.

216 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

" 3 : Y

(c) ANMS 250, r = 24 (d) ANMS 500, r = 16

Figure 4.9 Adaptive non-maximal suppression (ANMS) (Brown, Szeliski, and Winder
2005) (© 2005 IEEE: The upper two images show the strongest 250 and 500 interest points,
while the lower two images show the interest points selected with adaptive non-maximal sup-
pression, along with the corresponding suppression radius . Note how the latter features
have a much more uniform spatial distribution across the image.

Scale invariance

In many situations, detecting features at the finest stable scale possible may not be appro-
priate. For example, when matching images with little high frequency detail (e.g., clouds),
fine-scale features may not exist.

One solution to the problem is to extract features at a variety of scales, e.g., by performing
the same operations at multiple resolutions in a pyramid and then matching features at the
same level. This kind of approach is suitable when the images being matched do not undergo
large scale changes, e.g., when matching successive aerial images taken from an airplane or
stitching panoramas taken with a fixed-focal-length camera. Figure 4.10 shows the output of
one such approach, the multi-scale, oriented patch detector of Brown, Szeliski, and Winder
(2005), for which responses at five different scales are shown.

However, for most object recognition applications, the scale of the object in the image

4.1 Points and patches 217

Figure 4.10 Multi-scale oriented patches (MOPS) extracted at five pyramid levels (Brown,
Szeliski, and Winder 2005) (© 2005 IEEE. The boxes show the feature orientation and the
region from which the descriptor vectors are sampled.

is unknown. Instead of extracting features at many different scales and then matching all of
them, it is more efficient to extract features that are stable in both location and scale (Lowe
2004; Mikolajczyk and Schmid 2004).

Early investigations into scale selection were performed by Lindeberg (1993; 1998b),
who first proposed using extrema in the Laplacian of Gaussian (LoG) function as interest
point locations. Based on this work, Lowe (2004) proposed computing a set of sub-octave
Difference of Gaussian filters (Figure 4.11a), looking for 3D (space+scale) maxima in the re-
sulting structure (Figure 4.11b), and then computing a sub-pixel space+scale location using a
quadratic fit (Brown and Lowe 2002). The number of sub-octave levels was determined, after
careful empirical investigation, to be three, which corresponds to a quarter-octave pyramid,
which is the same as used by Triggs (2004).

As with the Harris operator, pixels where there is strong asymmetry in the local curvature
of the indicator function (in this case, the DoG) are rejected. This is implemented by first
computing the local Hessian of the difference image D,

H:[D” Dzy], 4.12)

and then rejecting keypoints for which

Tr(H)?

218 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Scale
(next
octave)

Scale
(first
octave)

L Z
Difference of Z
Gaussian Gaussian (DOG) T T T 7
(a) (b)

Figure 4.11 Scale-space feature detection using a sub-octave Difference of Gaussian pyra-
mid (Lowe 2004) (©) 2004 Springer: (a) Adjacent levels of a sub-octave Gaussian pyramid
are subtracted to produce Difference of Gaussian images; (b) extrema (maxima and minima)
in the resulting 3D volume are detected by comparing a pixel to its 26 neighbors.

While Lowe’s Scale Invariant Feature Transform (SIFT) performs well in practice, it is not
based on the same theoretical foundation of maximum spatial stability as the auto-correlation-
based detectors. (In fact, its detection locations are often complementary to those produced
by such techniques and can therefore be used in conjunction with these other approaches.)
In order to add a scale selection mechanism to the Harris corner detector, Mikolajczyk and
Schmid (2004) evaluate the Laplacian of Gaussian function at each detected Harris point (in
a multi-scale pyramid) and keep only those points for which the Laplacian is extremal (larger
or smaller than both its coarser and finer-level values). An optional iterative refinement for
both scale and position is also proposed and evaluated. Additional examples of scale invariant
region detectors are discussed by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007).

Rotational invariance and orientation estimation

In addition to dealing with scale changes, most image matching and object recognition algo-
rithms need to deal with (at least) in-plane image rotation. One way to deal with this problem
is to design descriptors that are rotationally invariant (Schmid and Mohr 1997), but such
descriptors have poor discriminability, i.e. they map different looking patches to the same
descriptor.

4.1 Points and patches 219

0 2n

angle histogram

Image gradients

Figure 4.12 A dominant orientation estimate can be computed by creating a histogram of
all the gradient orientations (weighted by their magnitudes or after thresholding out small
gradients) and then finding the significant peaks in this distribution (Lowe 2004) (© 2004
Springer.

A better method is to estimate a dominant orientation at each detected keypoint. Once
the local orientation and scale of a keypoint have been estimated, a scaled and oriented patch
around the detected point can be extracted and used to form a feature descriptor (Figures 4.10
and 4.17).

The simplest possible orientation estimate is the average gradient within a region around
the keypoint. If a Gaussian weighting function is used (Brown, Szeliski, and Winder 2005),
this average gradient is equivalent to a first-order steerable filter (Section 3.2.3), i.e., it can be
computed using an image convolution with the horizontal and vertical derivatives of Gaus-
sian filter (Freeman and Adelson 1991). In order to make this estimate more reliable, it is
usually preferable to use a larger aggregation window (Gaussian kernel size) than detection
window (Brown, Szeliski, and Winder 2005). The orientations of the square boxes shown in
Figure 4.10 were computed using this technique.

Sometimes, however, the averaged (signed) gradient in a region can be small and therefore
an unreliable indicator of orientation. A more reliable technique is to look at the histogram
of orientations computed around the keypoint. Lowe (2004) computes a 36-bin histogram
of edge orientations weighted by both gradient magnitude and Gaussian distance to the cen-
ter, finds all peaks within 80% of the global maximum, and then computes a more accurate
orientation estimate using a three-bin parabolic fit (Figure 4.12).

Affine invariance

While scale and rotation invariance are highly desirable, for many applications such as wide
baseline stereo matching (Pritchett and Zisserman 1998; Schaffalitzky and Zisserman 2002)
or location recognition (Chum, Philbin, Sivic et al. 2007), full affine invariance is preferred.

220 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.13 Affine region detectors used to match two images taken from dramatically
different viewpoints (Mikolajczyk and Schmid 2004) (©) 2004 Springer.

Figure 4.14 Affine normalization using the second moment matrices, as described by Miko-

lajczyk, Tuytelaars, Schmid ez al. (2005) (© 2005 Springer. After image coordinates are trans-
formed using the matrices A, /2 and A1_1 2, they are related by a pure rotation R, which
can be estimated using a dominant orientation technique.

Affine-invariant detectors not only respond at consistent locations after scale and orientation
changes, they also respond consistently across affine deformations such as (local) perspective
foreshortening (Figure 4.13). In fact, for a small enough patch, any continuous image warping
can be well approximated by an affine deformation.

To introduce affine invariance, several authors have proposed fitting an ellipse to the auto-
correlation or Hessian matrix (using eigenvalue analysis) and then using the principal axes
and ratios of this fit as the affine coordinate frame (Lindeberg and Garding 1997; Baumberg
2000; Mikolajczyk and Schmid 2004; Mikolajczyk, Tuytelaars, Schmid er al. 2005; Tuyte-
laars and Mikolajczyk 2007). Figure 4.14 shows how the square root of the moment matrix
can be used to transform local patches into a frame which is similar up to rotation.

Another important affine invariant region detector is the maximally stable extremal region
(MSER) detector developed by Matas, Chum, Urban et al. (2004). To detect MSERs, binary
regions are computed by thresholding the image at all possible gray levels (the technique
therefore only works for grayscale images). This operation can be performed efficiently by
first sorting all pixels by gray value and then incrementally adding pixels to each connected
component as the threshold is changed (Nistér and Stewénius 2008). As the threshold is
changed, the area of each component (region) is monitored; regions whose rate of change of
area with respect to the threshold is minimal are defined as maximally stable. Such regions

4.1 Points and patches 221

Figure 4.15 Maximally stable extremal regions (MSERSs) extracted and matched from a
number of images (Matas, Chum, Urban et al. 2004) (©) 2004 Elsevier.

Figure 4.16 Feature matching: how can we extract local descriptors that are invariant
to inter-image variations and yet still discriminative enough to establish correct correspon-
dences?

are therefore invariant to both affine geometric and photometric (linear bias-gain or smooth
monotonic) transformations (Figure 4.15). If desired, an affine coordinate frame can be fit to
each detected region using its moment matrix.

The area of feature point detectors continues to be very active, with papers appearing ev-
ery year at major computer vision conferences (Xiao and Shah 2003; Koethe 2003; Carneiro
and Jepson 2005; Kenney, Zuliani, and Manjunath 2005; Bay, Tuytelaars, and Van Gool 2006;
Platel, Balmachnova, Florack et al. 2006; Rosten and Drummond 2006). Mikolajczyk, Tuyte-
laars, Schmid et al. (2005) survey a number of popular affine region detectors and provide
experimental comparisons of their invariance to common image transformations such as scal-
ing, rotations, noise, and blur. These experimental results, code, and pointers to the surveyed
papers can be found on their Web site at http://www.robots.ox.ac.uk/~vgg/research/affine/.

Of course, keypoints are not the only features that can be used for registering images.
Zoghlami, Faugeras, and Deriche (1997) use line segments as well as point-like features to
estimate homographies between pairs of images, whereas Bartoli, Coquerelle, and Sturm
(2004) use line segments with local correspondences along the edges to extract 3D structure
and motion. Tuytelaars and Van Gool (2004) use affine invariant regions to detect corre-
spondences for wide baseline stereo matching, whereas Kadir, Zisserman, and Brady (2004)
detect salient regions where patch entropy and its rate of change with scale are locally max-
imal. Corso and Hager (2005) use a related technique to fit 2D oriented Gaussian kernels
to homogeneous regions. More details on techniques for finding and matching curves, lines,
and regions can be found later in this chapter.

http://www.robots.ox.ac.uk/~vgg/research/affine/

222 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.17 MOPS descriptors are formed using an 8 x 8 sampling of bias and gain nor-
malized intensity values, with a sample spacing of five pixels relative to the detection scale
(Brown, Szeliski, and Winder 2005) (©) 2005 IEEE. This low frequency sampling gives the
features some robustness to interest point location error and is achieved by sampling at a
higher pyramid level than the detection scale.

4.1.2 Feature descriptors

After detecting features (keypoints), we must match them, i.e., we must determine which
features come from corresponding locations in different images. In some situations, e.g., for
video sequences (Shi and Tomasi 1994) or for stereo pairs that have been rectified (Zhang,
Deriche, Faugeras et al. 1995; Loop and Zhang 1999; Scharstein and Szeliski 2002), the lo-
cal motion around each feature point may be mostly translational. In this case, simple error
metrics, such as the sum of squared differences or normalized cross-correlation, described
in Section 8.1 can be used to directly compare the intensities in small patches around each
feature point. (The comparative study by Mikolajczyk and Schmid (2005), discussed below,
uses cross-correlation.) Because feature points may not be exactly located, a more accurate
matching score can be computed by performing incremental motion refinement as described
in Section 8.1.3 but this can be time consuming and can sometimes even decrease perfor-
mance (Brown, Szeliski, and Winder 2005).

In most cases, however, the local appearance of features will change in orientation and
scale, and sometimes even undergo affine deformations. Extracting a local scale, orientation,
or affine frame estimate and then using this to resample the patch before forming the feature
descriptor is thus usually preferable (Figure 4.17).

Even after compensating for these changes, the local appearance of image patches will
usually still vary from image to image. How can we make image descriptors more invariant to
such changes, while still preserving discriminability between different (non-corresponding)
patches (Figure 4.16)? Mikolajczyk and Schmid (2005) review some recently developed
view-invariant local image descriptors and experimentally compare their performance. Be-
low, we describe a few of these descriptors in more detail.

4.1 Points and patches 223

Bias and gain normalization (MOPS). For tasks that do not exhibit large amounts of fore-
shortening, such as image stitching, simple normalized intensity patches perform reasonably
well and are simple to implement (Brown, Szeliski, and Winder 2005) (Figure 4.17). In or-
der to compensate for slight inaccuracies in the feature point detector (location, orientation,
and scale), these multi-scale oriented patches (MOPS) are sampled at a spacing of five pixels
relative to the detection scale, using a coarser level of the image pyramid to avoid aliasing.
To compensate for affine photometric variations (linear exposure changes or bias and gain,
(3.3)), patch intensities are re-scaled so that their mean is zero and their variance is one.

Scale invariant feature transform (SIFT). SIFT features are formed by computing the
gradient at each pixel in a 16 x 16 window around the detected keypoint, using the appropriate
level of the Gaussian pyramid at which the keypoint was detected. The gradient magnitudes
are downweighted by a Gaussian fall-off function (shown as a blue circle in (Figure 4.18a) in
order to reduce the influence of gradients far from the center, as these are more affected by
small misregistrations.

In each 4 x 4 quadrant, a gradient orientation histogram is formed by (conceptually)
adding the weighted gradient value to one of eight orientation histogram bins. To reduce the
effects of location and dominant orientation misestimation, each of the original 256 weighted
gradient magnitudes is softly added to 2 x 2 x 2 histogram bins using trilinear interpolation.
Softly distributing values to adjacent histogram bins is generally a good idea in any appli-
cation where histograms are being computed, e.g., for Hough transforms (Section 4.3.2) or
local histogram equalization (Section 3.1.4).

The resulting 128 non-negative values form a raw version of the SIFT descriptor vector.
To reduce the effects of contrast or gain (additive variations are already removed by the gra-
dient), the 128-D vector is normalized to unit length. To further make the descriptor robust to
other photometric variations, values are clipped to 0.2 and the resulting vector is once again
renormalized to unit length.

PCA-SIFT. Ke and Sukthankar (2004) propose a simpler way to compute descriptors in-
spired by SIFT; it computes the x and y (gradient) derivatives over a 39 x 39 patch and
then reduces the resulting 3042-dimensional vector to 36 using principal component analysis
(PCA) (Section 14.2.1 and Appendix A.1.2). Another popular variant of SIFT is SURF (Bay,
Tuytelaars, and Van Gool 2006), which uses box filters to approximate the derivatives and
integrals used in SIFT.

Gradient location-orientation histogram (GLOH). This descriptor, developed by Miko-
lajczyk and Schmid (2005), is a variant on SIFT that uses a log-polar binning structure instead
of the four quadrants used by Lowe (2004) (Figure 4.19). The spatial bins are of radius 6,

224 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

K
Kk

(a) image gradients (b) keypoint descriptor

Figure 4.18 A schematic representation of Lowe’s (2004) scale invariant feature transform
(SIFT): (a) Gradient orientations and magnitudes are computed at each pixel and weighted
by a Gaussian fall-off function (blue circle). (b) A weighted gradient orientation histogram
is then computed in each subregion, using trilinear interpolation. While this figure shows an
8 x 8 pixel patch and a 2 x 2 descriptor array, Lowe’s actual implementation uses 16 x 16
patches and a 4 x 4 array of eight-bin histograms.

11, and 15, with eight angular bins (except for the central region), for a total of 17 spa-
tial bins and 16 orientation bins. The 272-dimensional histogram is then projected onto
a 128-dimensional descriptor using PCA trained on a large database. In their evaluation,
Mikolajczyk and Schmid (2005) found that GLOH, which has the best performance overall,
outperforms SIFT by a small margin.

Steerable filters. Steerable filters (Section 3.2.3) are combinations of derivative of Gaus-
sian filters that permit the rapid computation of even and odd (symmetric and anti-symmetric)
edge-like and corner-like features at all possible orientations (Freeman and Adelson 1991).
Because they use reasonably broad Gaussians, they too are somewhat insensitive to localiza-
tion and orientation errors.

Performance of local descriptors. Among the local descriptors that Mikolajczyk and Schmid
(2005) compared, they found that GLOH performed best, followed closely by SIFT (see Fig-
ure 4.25). They also present results for many other descriptors not covered in this book.

The field of feature descriptors continues to evolve rapidly, with some of the newer tech-
niques looking at local color information (van de Weijer and Schmid 2006; Abdel-Hakim
and Farag 2006). Winder and Brown (2007) develop a multi-stage framework for feature
descriptor computation that subsumes both SIFT and GLOH (Figure 4.20a) and also allows
them to learn optimal parameters for newer descriptors that outperform previous hand-tuned

4.1 Points and patches 225

> *

(a) image gradients (b) keypoint descriptor

Figure 4.19 The gradient location-orientation histogram (GLOH) descriptor uses log-polar
bins instead of square bins to compute orientation histograms (Mikolajczyk and Schmid
2005).

descriptors. Hua, Brown, and Winder (2007) extend this work by learning lower-dimensional
projections of higher-dimensional descriptors that have the best discriminative power. Both
of these papers use a database of real-world image patches (Figure 4.20b) obtained by sam-
pling images at locations that were reliably matched using a robust structure-from-motion
algorithm applied to Internet photo collections (Snavely, Seitz, and Szeliski 2006; Goesele,
Snavely, Curless et al. 2007). In concurrent work, Tola, Lepetit, and Fua (2010) developed a
similar DAISY descriptor for dense stereo matching and optimized its parameters based on
ground truth stereo data.

While these techniques construct feature detectors that optimize for repeatability across
all object classes, it is also possible to develop class- or instance-specific feature detectors that
maximize discriminability from other classes (Ferencz, Learned-Miller, and Malik 2008).

4.1.3 Feature matching

Once we have extracted features and their descriptors from two or more images, the next step
is to establish some preliminary feature matches between these images. In this section, we
divide this problem into two separate components. The first is to select a matching strategy,
which determines which correspondences are passed on to the next stage for further process-
ing. The second is to devise efficient data structures and algorithms to perform this matching
as quickly as possible. (See the discussion of related techniques in Section 14.3.2.)

226 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

50
2/

- L]
St: AFTgrid with 2 GHpolergrid o avagridwith 542 17 polar samples

bilinear weights with Gifinesr aciel Gaussanweights with Gaussan weights
9 and angular weights 9 =g

() (b)

Figure 4.20 Spatial summation blocks for SIFT, GLOH, and some newly developed feature
descriptors (Winder and Brown 2007) (©) 2007 IEEE: (a) The parameters for the new features,
e.g., their Gaussian weights, are learned from a training database of (b) matched real-world
image patches obtained from robust structure from motion applied to Internet photo collec-
tions (Hua, Brown, and Winder 2007).

Matching strategy and error rates

Determining which feature matches are reasonable to process further depends on the context
in which the matching is being performed. Say we are given two images that overlap to a fair
amount (e.g., for image stitching, as in Figure 4.16, or for tracking objects in a video). We
know that most features in one image are likely to match the other image, although some may
not match because they are occluded or their appearance has changed too much.

On the other hand, if we are trying to recognize how many known objects appear in a clut-
tered scene (Figure 4.21), most of the features may not match. Furthermore, a large number
of potentially matching objects must be searched, which requires more efficient strategies, as
described below.

To begin with, we assume that the feature descriptors have been designed so that Eu-
clidean (vector magnitude) distances in feature space can be directly used for ranking poten-
tial matches. If it turns out that certain parameters (axes) in a descriptor are more reliable
than others, it is usually preferable to re-scale these axes ahead of time, e.g., by determin-
ing how much they vary when compared against other known good matches (Hua, Brown,
and Winder 2007). A more general process, which involves transforming feature vectors
into a new scaled basis, is called whitening and is discussed in more detail in the context of
eigenface-based face recognition (Section 14.2.1).

Given a Euclidean distance metric, the simplest matching strategy is to set a threshold
(maximum distance) and to return all matches from other images within this threshold. Set-
ting the threshold too high results in too many false positives, i.e., incorrect matches being
returned. Setting the threshold too low results in too many false negatives, i.e., too many
correct matches being missed (Figure 4.22).

We can quantify the performance of a matching algorithm at a particular threshold by

4.1 Points and patches 227

Figure 4.21 Recognizing objects in a cluttered scene (Lowe 2004) (©) 2004 Springer. Two of
the training images in the database are shown on the left. These are matched to the cluttered
scene in the middle using SIFT features, shown as small squares in the right image. The affine

warp of each recognized database image onto the scene is shown as a larger parallelogram in
the right image.

Figure 4.22 False positives and negatives: The black digits 1 and 2 are features being
matched against a database of features in other images. At the current threshold setting (the
solid circles), the green 1 is a true positive (good match), the blue 1 is a false negative (failure
to match), and the red 3 is a false positive (incorrect match). If we set the threshold higher

(the dashed circles), the blue 1 becomes a true positive but the brown 4 becomes an additional
false positive.

228 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

True matches True non-matches

Predicted matches TP =18 FP=4 P'=22 [PPv=082 |
Predicted non-matches FN =2 TN =76 N'=78
P=20 N = 80 Total = 100
[TPR=090 [FPR=0.05 | ACC = 0.94

Table 4.1 The number of matches correctly and incorrectly estimated by a feature matching
algorithm, showing the number of true positives (TP), false positives (FP), false negatives
(FN) and true negatives (TN). The columns sum up to the actual number of positives (P) and
negatives (N), while the rows sum up to the predicted number of positives (P’) and negatives
(N’). The formulas for the true positive rate (TPR), the false positive rate (FPR), the positive
predictive value (PPV), and the accuracy (ACC) are given in the text.

first counting the number of true and false matches and match failures, using the following
definitions (Fawcett 2006):

e TP: true positives, i.e., number of correct matches;

e FN: false negatives, matches that were not correctly detected;
e FP: false positives, proposed matches that are incorrect;

e TN: true negatives, non-matches that were correctly rejected.

Table 4.1 shows a sample confusion matrix (contingency table) containing such numbers.
We can convert these numbers into unit rates by defining the following quantities (Fawcett
2006):

e true positive rate (TPR),

TP TP
R = = — 4.14)
TP+FN P
e false positive rate (FPR),
FP FP
R = = — (4.15)
FP+TN N
e positive predictive value (PPV),
TP TP
PPV = = — 4.1
v TP+FP P’ (4.16)
e accuracy (ACC),
TP+TN
ACC = . 4.17
P+N ()

4.1 Points and patches 229

true positive rate

Ik
qual error
08F-- . rate

E A

/,random chance #

! TP TN

. 1 T >
false positive rate 0 d
(a) (b)

Figure 4.23 ROC curve and its related rates: (a) The ROC curve plots the true positive rate
against the false positive rate for a particular combination of feature extraction and match-
ing algorithms. Ideally, the true positive rate should be close to 1, while the false positive
rate is close to 0. The area under the ROC curve (AUC) is often used as a single (scalar)
measure of algorithm performance. Alternatively, the equal error rate is sometimes used. (b)
The distribution of positives (matches) and negatives (non-matches) as a function of inter-
feature distance d. As the threshold 6 is increased, the number of true positives (TP) and false
positives (FP) increases.

In the information retrieval (or document retrieval) literature (Baeza-Yates and Ribeiro-
Neto 1999; Manning, Raghavan, and Schiitze 2008), the term precision (how many returned
documents are relevant) is used instead of PPV and recall (what fraction of relevant docu-
ments was found) is used instead of TPR.

Any particular matching strategy (at a particular threshold or parameter setting) can be
rated by the TPR and FPR numbers; ideally, the true positive rate will be close to 1 and the
false positive rate close to 0. As we vary the matching threshold, we obtain a family of such
points, which are collectively known as the receiver operating characteristic (ROC curve)
(Fawcett 2006) (Figure 4.23a). The closer this curve lies to the upper left corner, i.e., the
larger the area under the curve (AUC), the better its performance. Figure 4.23b shows how
we can plot the number of matches and non-matches as a function of inter-feature distance d.
These curves can then be used to plot an ROC curve (Exercise 4.3). The ROC curve can also
be used to calculate the mean average precision, which is the average precision (PPV) as you
vary the threshold to select the best results, then the two top results, etc.

The problem with using a fixed threshold is that it is difficult to set; the useful range

230 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.24 Fixed threshold, nearest neighbor, and nearest neighbor distance ratio matching.
At a fixed distance threshold (dashed circles), descriptor D 4 fails to match Dp and Dp
incorrectly matches D¢ and Dg. If we pick the nearest neighbor, D 4 correctly matches Dpg
but Dp incorrectly matches D¢. Using nearest neighbor distance ratio (NNDR) matching,
the small NNDR d; /ds correctly matches D 4 with D, and the large NNDR d /d, correctly
rejects matches for Dp.

of thresholds can vary a lot as we move to different parts of the feature space (Lowe 2004;
Mikolajczyk and Schmid 2005). A better strategy in such cases is to simply match the nearest
neighbor in feature space. Since some features may have no matches (e.g., they may be part
of background clutter in object recognition or they may be occluded in the other image), a
threshold is still used to reduce the number of false positives.

Ideally, this threshold itself will adapt to different regions of the feature space. If sufficient
training data is available (Hua, Brown, and Winder 2007), it is sometimes possible to learn
different thresholds for different features. Often, however, we are simply given a collection
of images to match, e.g., when stitching images or constructing 3D models from unordered
photo collections (Brown and Lowe 2007, 2003; Snavely, Seitz, and Szeliski 2006). In this
case, a useful heuristic can be to compare the nearest neighbor distance to that of the second
nearest neighbor, preferably taken from an image that is known not to match the target (e.g.,
a different object in the database) (Brown and Lowe 2002; Lowe 2004). We can define this

nearest neighbor distance ratio (Mikolajczyk and Schmid 2005) as
di _ ||Da— Dg|
NNDR = — = -——«+—,
dy [|Da— Dc|

where d; and dy are the nearest and second nearest neighbor distances, D 4 is the target

(4.18)

descriptor, and Dp and D¢ are its closest two neighbors (Figure 4.24).

The effects of using these three different matching strategies for the feature descriptors
evaluated by Mikolajczyk and Schmid (2005) are shown in Figure 4.25. As you can see, the
nearest neighbor and NNDR strategies produce improved ROC curves.

4.1 Points and patches

%——* gloh %————x_cross correlation
M o——o0 sift +— ==~ gradient moments
o8l =3 % pca -sift g——8 complex filters

O———% shape context w——— differential invariants
071> P spin +———+ steerable filters

- - - % hes-lap gloh

#correct / 3708

1-precision
()
1 1
— gloh x————x_cfoss correlation #—— gloh *x———x_cross correlation
%Moo sift ===~ gradient moments 097 00 sift ===~ gradient moments
= = pca -sift =B——a complex filters = % pca -sift ——=a complex filters
08| B 08H
O———% shape context w——= differential invariants O———% shape context w—— differential invariants
07H P> B spin +———+ steerable filters 07> B spin +———+ steerable filters
% - ——%* hes-lap gloh # - - —* hes-lap gloh
Q osf : B Q osf
S >
@ g 05
8 <]
3 3
#* +# 04
03
02
01
* .

231

(b) ()

Figure 4.25 Performance of the feature descriptors evaluated by Mikolajczyk and Schmid
(2005) (© 2005 IEEE, shown for three matching strategies: (a) fixed threshold; (b) nearest
neighbor; (c) nearest neighbor distance ratio (NNDR). Note how the ordering of the algo-
rithms does not change that much, but the overall performance varies significantly between

the different matching strategies.

232 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.26 The three Haar wavelet coefficients used for hashing the MOPS descriptor de-
vised by Brown, Szeliski, and Winder (2005) are computed by summing each 8 x 8 normalized
patch over the light and dark gray regions and taking their difference.

Efficient matching

Once we have decided on a matching strategy, we still need to search efficiently for poten-
tial candidates. The simplest way to find all corresponding feature points is to compare all
features against all other features in each pair of potentially matching images. Unfortunately,
this is quadratic in the number of extracted features, which makes it impractical for most
applications.

A better approach is to devise an indexing structure, such as a multi-dimensional search
tree or a hash table, to rapidly search for features near a given feature. Such indexing struc-
tures can either be built for each image independently (which is useful if we want to only
consider certain potential matches, e.g., searching for a particular object) or globally for all
the images in a given database, which can potentially be faster, since it removes the need to it-
erate over each image. For extremely large databases (millions of images or more), even more
efficient structures based on ideas from document retrieval (e.g., vocabulary trees, (Nistér and
Stewénius 2006)) can be used (Section 14.3.2).

One of the simpler techniques to implement is multi-dimensional hashing, which maps
descriptors into fixed size buckets based on some function applied to each descriptor vector.
At matching time, each new feature is hashed into a bucket, and a search of nearby buckets
is used to return potential candidates, which can then be sorted or graded to determine which
are valid matches.

A simple example of hashing is the Haar wavelets used by Brown, Szeliski, and Winder
(2005) in their MOPS paper. During the matching structure construction, each 8 x 8 scaled,
oriented, and normalized MOPS patch is converted into a three-element index by perform-
ing sums over different quadrants of the patch (Figure 4.26). The resulting three values are
normalized by their expected standard deviations and then mapped to the two (of b = 10)
nearest 1D bins. The three-dimensional indices formed by concatenating the three quantized
values are used to index the 22 = 8 bins where the feature is stored (added). At query time,
only the primary (closest) indices are used, so only a single three-dimensional bin needs to

4.1 Points and patches 233

I I [bata poims} o
! | Cuery pointl +

08 j Remaining kearch hypersphere! (d1,.34 ’\

| . ! ! (d2.. (1, 62
Cff‘\t;\‘-‘“\ e/

|

|

|
| ur }
|
|
|
I
I

|
I
\ B i (d2,34)0) (d1,14)0) (d1,42); (d1 85)!
04 | . i
A F A , j\

02F -« | G
A

mC
IcC

H

|
1
|
PG
L Il id
0 02 04 06 08 1

(a) (b)

Figure 4.27 K-d tree and best bin first (BBF) search (Beis and Lowe 1999) © 1999 IEEE:
(a) The spatial arrangement of the axis-aligned cutting planes is shown using dashed lines.
Individual data points are shown as small diamonds. (b) The same subdivision can be repre-
sented as a tree, where each interior node represents an axis-aligned cutting plane (e.g., the
top node cuts along dimension d1 at value .34) and each leaf node is a data point. During a
BBF search, a query point (denoted by “+”) first looks in its containing bin (D) and then in
its nearest adjacent bin (B), rather than its closest neighbor in the tree (C).

be examined. The coefficients in the bin can then be used to select k£ approximate nearest
neighbors for further processing (such as computing the NNDR).

A more complex, but more widely applicable, version of hashing is called locality sen-
sitive hashing, which uses unions of independently computed hashing functions to index
the features (Gionis, Indyk, and Motwani 1999; Shakhnarovich, Darrell, and Indyk 2006).
Shakhnarovich, Viola, and Darrell (2003) extend this technique to be more sensitive to the
distribution of points in parameter space, which they call parameter-sensitive hashing. Even
more recent work converts high-dimensional descriptor vectors into binary codes that can be
compared using Hamming distances (Torralba, Weiss, and Fergus 2008; Weiss, Torralba, and
Fergus 2008) or that can accommodate arbitrary kernel functions (Kulis and Grauman 2009;
Raginsky and Lazebnik 2009).

Another widely used class of indexing structures are multi-dimensional search trees. The
best known of these are k-d trees, also often written as kd-trees, which divide the multi-
dimensional feature space along alternating axis-aligned hyperplanes, choosing the threshold
along each axis so as to maximize some criterion, such as the search tree balance (Samet
1989). Figure 4.27 shows an example of a two-dimensional k-d tree. Here, eight different data
points A—H are shown as small diamonds arranged on a two-dimensional plane. The k-d tree

234 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

recursively splits this plane along axis-aligned (horizontal or vertical) cutting planes. Each
split can be denoted using the dimension number and split value (Figure 4.27b). The splits are
arranged so as to try to balance the tree, i.e., to keep its maximum depth as small as possible.
At query time, a classic k-d tree search first locates the query point (+) in its appropriate
bin (D), and then searches nearby leaves in the tree (C, B, ...) until it can guarantee that
the nearest neighbor has been found. The best bin first (BBF) search (Beis and Lowe 1999)
searches bins in order of their spatial proximity to the query point and is therefore usually
more efficient.

Many additional data structures have been developed over the years for solving nearest
neighbor problems (Arya, Mount, Netanyahu et al. 1998; Liang, Liu, Xu et al. 2001; Hjalta-
son and Samet 2003). For example, Nene and Nayar (1997) developed a technique they call
slicing that uses a series of 1D binary searches on the point list sorted along different dimen-
sions to efficiently cull down a list of candidate points that lie within a hypercube of the query
point. Grauman and Darrell (2005) reweight the matches at different levels of an indexing
tree, which allows their technique to be less sensitive to discretization errors in the tree con-
struction. Nistér and Stewénius (2006) use a metric tree, which compares feature descriptors
to a small number of prototypes at each level in a hierarchy. The resulting quantized visual
words can then be used with classical information retrieval (document relevance) techniques
to quickly winnow down a set of potential candidates from a database of millions of images
(Section 14.3.2). Muja and Lowe (2009) compare a number of these approaches, introduce a
new one of their own (priority search on hierarchical k-means trees), and conclude that mul-
tiple randomized k-d trees often provide the best performance. Despite all of this promising
work, the rapid computation of image feature correspondences remains a challenging open
research problem.

Feature match verification and densification

Once we have some hypothetical (putative) matches, we can often use geometric alignment
(Section 6.1) to verify which matches are inliers and which ones are outliers. For example,
if we expect the whole image to be translated or rotated in the matching view, we can fit a
global geometric transform and keep only those feature matches that are sufficiently close to
this estimated transformation. The process of selecting a small set of seed matches and then
verifying a larger set is often called random sampling or RANSAC (Section 6.1.4). Once an
initial set of correspondences has been established, some systems look for additional matches,
e.g., by looking for additional correspondences along epipolar lines (Section 11.1) or in the
vicinity of estimated locations based on the global transform. These topics are discussed
further in Sections 6.1, 11.2, and 14.3.1.

4.1 Points and patches 235

4.1.4 Feature tracking

An alternative to independently finding features in all candidate images and then matching
them is to find a set of likely feature locations in a first image and to then search for their
corresponding locations in subsequent images. This kind of detect then track approach is
more widely used for video tracking applications, where the expected amount of motion and
appearance deformation between adjacent frames is expected to be small.

The process of selecting good features to track is closely related to selecting good features
for more general recognition applications. In practice, regions containing high gradients in
both directions, i.e., which have high eigenvalues in the auto-correlation matrix (4.8), provide
stable locations at which to find correspondences (Shi and Tomasi 1994).

In subsequent frames, searching for locations where the corresponding patch has low
squared difference (4.1) often works well enough. However, if the images are undergo-
ing brightness change, explicitly compensating for such variations (8.9) or using normalized
cross-correlation (8.11) may be preferable. If the search range is large, it is also often more
efficient to use a hierarchical search strategy, which uses matches in lower-resolution images
to provide better initial guesses and hence speed up the search (Section 8.1.1). Alternatives
to this strategy involve learning what the appearance of the patch being tracked should be and
then searching for it in the vicinity of its predicted position (Avidan 2001; Jurie and Dhome
2002; Williams, Blake, and Cipolla 2003). These topics are all covered in more detail in
Section 8.1.3.

If features are being tracked over longer image sequences, their appearance can undergo
larger changes. You then have to decide whether to continue matching against the originally
detected patch (feature) or to re-sample each subsequent frame at the matching location. The
former strategy is prone to failure as the original patch can undergo appearance changes such
as foreshortening. The latter runs the risk of the feature drifting from its original location
to some other location in the image (Shi and Tomasi 1994). (Mathematically, small mis-
registration errors compound to create a Markov Random Walk, which leads to larger drift
over time.)

A preferable solution is to compare the original patch to later image locations using an
affine motion model (Section 8.2). Shi and Tomasi (1994) first compare patches in neigh-
boring frames using a translational model and then use the location estimates produced by
this step to initialize an affine registration between the patch in the current frame and the
base frame where a feature was first detected (Figure 4.28). In their system, features are only
detected infrequently, i.e., only in regions where tracking has failed. In the usual case, an
area around the current predicted location of the feature is searched with an incremental reg-
istration algorithm (Section 8.1.3). The resulting tracker is often called the Kanade-Lucas—
Tomasi (KLT) tracker.

236 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

25 35 35 35 25
= = B EE

Figure 4.28 Feature tracking using an affine motion model (Shi and Tomasi 1994) (© 1994

IEEE, Top row: image patch around the tracked feature location. Bottom row: image patch
after warping back toward the first frame using an affine deformation. Even though the speed
sign gets larger from frame to frame, the affine transformation maintains a good resemblance
between the original and subsequent tracked frames.

Since their original work on feature tracking, Shi and Tomasi’s approach has generated a
string of interesting follow-on papers and applications. Beardsley, Torr, and Zisserman (1996)
use extended feature tracking combined with structure from motion (Chapter 7) to incremen-
tally build up sparse 3D models from video sequences. Kang, Szeliski, and Shum (1997)
tie together the corners of adjacent (regularly gridded) patches to provide some additional
stability to the tracking, at the cost of poorer handling of occlusions. Tommasini, Fusiello,
Trucco et al. (1998) provide a better spurious match rejection criterion for the basic Shi and
Tomasi algorithm, Collins and Liu (2003) provide improved mechanisms for feature selec-
tion and dealing with larger appearance changes over time, and Shafique and Shah (2005)
develop algorithms for feature matching (data association) for videos with large numbers of
moving objects or points. Yilmaz, Javed, and Shah (2006) and Lepetit and Fua (2005) survey
the larger field of object tracking, which includes not only feature-based techniques but also
alternative techniques based on contour and region (Section 5.1).

One of the newest developments in feature tracking is the use of learning algorithms to
build special-purpose recognizers to rapidly search for matching features anywhere in an
image (Lepetit, Pilet, and Fua 2006; Hinterstoisser, Benhimane, Navab et al. 2008; Rogez,
Rihan, Ramalingam e al. 2008; Ozuysal, Calonder, Lepetit et al. 2010).> By taking the time
to train classifiers on sample patches and their affine deformations, extremely fast and reliable
feature detectors can be constructed, which enables much faster motions to be supported
(Figure 4.29). Coupling such features to deformable models (Pilet, Lepetit, and Fua 2008) or
structure-from-motion algorithms (Klein and Murray 2008) can result in even higher stability.

2 See also my previous comment on earlier work in learning-based tracking (Avidan 2001; Jurie and Dhome
2002; Williams, Blake, and Cipolla 2003).

4.1 Points and patches 237

Figure 4.29 Real-time head tracking using the fast trained classifiers of Lepetit, Pilet, and
Fua (2004) © 2004 IEEE.

4.1.5 Application: Performance-driven animation

One of the most compelling applications of fast feature tracking is performance-driven an-
imation, i.e., the interactive deformation of a 3D graphics model based on tracking a user’s
motions (Williams 1990; Litwinowicz and Williams 1994; Lepetit, Pilet, and Fua 2004).

Buck, Finkelstein, Jacobs et al. (2000) present a system that tracks a user’s facial expres-
sions and head motions and then uses them to morph among a series of hand-drawn sketches.
An animator first extracts the eye and mouth regions of each sketch and draws control lines
over each image (Figure 4.30a). At run time, a face-tracking system (Toyama 1998) deter-
mines the current location of these features (Figure 4.30b). The animation system decides
which input images to morph based on nearest neighbor feature appearance matching and
triangular barycentric interpolation. It also computes the global location and orientation of
the head from the tracked features. The resulting morphed eye and mouth regions are then
composited back into the overall head model to yield a frame of hand-drawn animation (Fig-
ure 4.30d).

In more recent work, Barnes, Jacobs, Sanders et al. (2008) watch users animate paper
cutouts on a desk and then turn the resulting motions and drawings into seamless 2D anima-
tions.

238 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b)

(d)

Figure 4.30 Performance-driven, hand-drawn animation (Buck, Finkelstein, Jacobs et al.
2000) © 2000 ACM: (a) eye and mouth portions of hand-drawn sketch with their overlaid
control lines; (b) an input video frame with the tracked features overlaid; (c) a different input
video frame along with its (d) corresponding hand-drawn animation.

4.2 Edges

While interest points are useful for finding image locations that can be accurately matched
in 2D, edge points are far more plentiful and often carry important semantic associations.
For example, the boundaries of objects, which also correspond to occlusion events in 3D, are
usually delineated by visible contours. Other kinds of edges correspond to shadow boundaries
or crease edges, where surface orientation changes rapidly. Isolated edge points can also be
grouped into longer curves or contours, as well as straight line segments (Section 4.3). It
is interesting that even young children have no difficulty in recognizing familiar objects or
animals from such simple line drawings.

4.2.1 Edge detection

Given an image, how can we find the salient edges? Consider the color images in Figure 4.31.
If someone asked you to point out the most “salient” or “strongest” edges or the object bound-
aries (Martin, Fowlkes, and Malik 2004; Arbeldez, Maire, Fowlkes et al. 2010), which ones
would you trace? How closely do your perceptions match the edge images shown in Fig-
ure 4.31?

Qualitatively, edges occur at boundaries between regions of different color, intensity, or
texture. Unfortunately, segmenting an image into coherent regions is a difficult task, which
we address in Chapter 5. Often, it is preferable to detect edges using only purely local infor-
mation.

Under such conditions, a reasonable approach is to define an edge as a location of rapid

4.2 Edges 239

Figure 4.31 Human boundary detection (Martin, Fowlkes, and Malik 2004) (c) 2004 IEEE.
The darkness of the edges corresponds to how many human subjects marked an object bound-
ary at that location.

intensity variation.> Think of an image as a height field. On such a surface, edges occur
at locations of steep slopes, or equivalently, in regions of closely packed contour lines (on a
topographic map).

A mathematical way to define the slope and direction of a surface is through its gradient,

oI 01

J(x)=VI(z) = (8?’ 87;)

(x). 4.19)
The local gradient vector J points in the direction of steepest ascent in the intensity function.
Its magnitude is an indication of the slope or strength of the variation, while its orientation
points in a direction perpendicular to the local contour.

Unfortunately, taking image derivatives accentuates high frequencies and hence amplifies
noise, since the proportion of noise to signal is larger at high frequencies. It is therefore
prudent to smooth the image with a low-pass filter prior to computing the gradient. Because
we would like the response of our edge detector to be independent of orientation, a circularly
symmetric smoothing filter is desirable. As we saw in Section 3.2, the Gaussian is the only
separable circularly symmetric filter and so it is used in most edge detection algorithms.
Canny (1986) discusses alternative filters and a number of researcher review alternative edge
detection algorithms and compare their performance (Davis 1975; Nalwa and Binford 1986;
Nalwa 1987; Deriche 1987; Freeman and Adelson 1991; Nalwa 1993; Heath, Sarkar, Sanocki
et al. 1998; Crane 1997; Ritter and Wilson 2000; Bowyer, Kranenburg, and Dougherty 2001;
Arbelaez, Maire, Fowlkes et al. 2010).

Because differentiation is a linear operation, it commutes with other linear filtering oper-

3 We defer the topic of edge detection in color images.

240 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

ations. The gradient of the smoothed image can therefore be written as
Jo (@) = V[Go(x) « I(x)] = [VGo|(x) + I(z), (4.20)

i.e., we can convolve the image with the horizontal and vertical derivatives of the Gaussian
kernel function,

2 2
G, 9G, 1 (_x +y) 421

VG, (x) = (W’ Ty)(w) =[-z - y]; exp 902

(The parameter o indicates the width of the Gaussian.) This is the same computation that
is performed by Freeman and Adelson’s (1991) first-order steerable filter, which we already
covered in Section 3.2.3.

For many applications, however, we wish to thin such a continuous gradient image to
only return isolated edges, i.e., as single pixels at discrete locations along the edge contours.
This can be achieved by looking for maxima in the edge strength (gradient magnitude) in a
direction perpendicular to the edge orientation, i.e., along the gradient direction.

Finding this maximum corresponds to taking a directional derivative of the strength field
in the direction of the gradient and then looking for zero crossings. The desired directional
derivative is equivalent to the dot product between a second gradient operator and the results
of the first,

So(x) =V - Jo(x) = [V2G,|(x) * I(z)]. (4.22)
The gradient operator dot product with the gradient is called the Laplacian. The convolution
kernel))))
1 e 4y e +y
2 _

is therefore called the Laplacian of Gaussian (LoG) kernel (Marr and Hildreth 1980). This
kernel can be split into two separable parts,

T

V26, (@) = = (1- 0) Gal@Goln + 55 (1- 25) Gl)Gale) 429
o 202 o3 202

(Wiejak, Buxton, and Buxton 1985), which allows for a much more efficient implementation

using separable filtering (Section 3.2.1).

In practice, it is quite common to replace the Laplacian of Gaussian convolution with a
Difference of Gaussian (DoG) computation, since the kernel shapes are qualitatively similar
(Figure 3.35). This is especially convenient if a “Laplacian pyramid” (Section 3.5) has already
been computed.*

4 Recall that Burt and Adelson’s (1983a) “Laplacian pyramid” actually computed differences of Gaussian-filtered
levels.

4.2 Edges 241

In fact, it is not strictly necessary to take differences between adjacent levels when com-
puting the edge field. Think about what a zero crossing in a “generalized” difference of
Gaussians image represents. The finer (smaller kernel) Gaussian is a noise-reduced version
of the original image. The coarser (larger kernel) Gaussian is an estimate of the average in-
tensity over a larger region. Thus, whenever the DoG image changes sign, this corresponds
to the (slightly blurred) image going from relatively darker to relatively lighter, as compared
to the average intensity in that neighborhood.

Once we have computed the sign function S(x), we must find its zero crossings and
convert these into edge elements (edgels). An easy way to detect and represent zero crossings
is to look for adjacent pixel locations @; and x; where the sign changes value, i.e., [S(x;) >
0] # [S(x;) > 0.

The sub-pixel location of this crossing can be obtained by computing the “z-intercept” of
the “line” connecting S(x;) and S(z;),

ziS(x;) —x;S(xi)

S(a;) — S(a) *+23)

L, =

The orientation and strength of such edgels can be obtained by linearly interpolating the
gradient values computed on the original pixel grid.

An alternative edgel representation can be obtained by linking adjacent edgels on the
dual grid to form edgels that live inside each square formed by four adjacent pixels in the
original pixel grid.> The (potential) advantage of this representation is that the edgels now
live on a grid offset by half a pixel from the original pixel grid and are thus easier to store
and access. As before, the orientations and strengths of the edges can be computed by
interpolating the gradient field or estimating these values from the difference of Gaussian
image (see Exercise 4.7).

In applications where the accuracy of the edge orientation is more important, higher-order
steerable filters can be used (Freeman and Adelson 1991) (see Section 3.2.3). Such filters are
more selective for more elongated edges and also have the possibility of better modeling curve
intersections because they can represent multiple orientations at the same pixel (Figure 3.16).
Their disadvantage is that they are more expensive to compute and the directional derivative
of the edge strength does not have a simple closed form solution.®

242 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.32 Scale selection for edge detection (Elder and Zucker 1998) (©) 1998 IEEE:
(a) original image; (b—c) Canny/Deriche edge detector tuned to the finer (mannequin) and
coarser (shadow) scales; (d) minimum reliable scale for gradient estimation; (e) minimum
reliable scale for second derivative estimation; (f) final detected edges.

Scale selection and blur estimation

As we mentioned before, the derivative, Laplacian, and Difference of Gaussian filters (4.20—
4.23) all require the selection of a spatial scale parameter o. If we are only interested in
detecting sharp edges, the width of the filter can be determined from image noise characteris-
tics (Canny 1986; Elder and Zucker 1998). However, if we want to detect edges that occur at
different resolutions (Figures 4.32b—c), a scale-space approach that detects and then selects
edges at different scales may be necessary (Witkin 1983; Lindeberg 1994, 1998a; Nielsen,
Florack, and Deriche 1997).

Elder and Zucker (1998) present a principled approach to solving this problem. Given
a known image noise level, their technique computes, for every pixel, the minimum scale
at which an edge can be reliably detected (Figure 4.32d). Their approach first computes

5 This algorithm is a 2D version of the 3D marching cubes isosurface extraction algorithm (Lorensen and Cline
1987).

6 In fact, the edge orientation can have a 180° ambiguity for “bar edges”, which makes the computation of zero
crossings in the derivative more tricky.

4.2 Edges 243

gradients densely over an image by selecting among gradient estimates computed at different
scales, based on their gradient magnitudes. It then performs a similar estimate of minimum
scale for directed second derivatives and uses zero crossings of this latter quantity to robustly
select edges (Figures 4.32e—f). As an optional final step, the blur width of each edge can
be computed from the distance between extrema in the second derivative response minus the
width of the Gaussian filter.

Color edge detection

While most edge detection techniques have been developed for grayscale images, color im-
ages can provide additional information. For example, noticeable edges between iso-luminant
colors (colors that have the same luminance) are useful cues but fail to be detected by grayscale
edge operators.

One simple approach is to combine the outputs of grayscale detectors run on each color
band separately.” However, some care must be taken. For example, if we simply sum up
the gradients in each of the color bands, the signed gradients may actually cancel each other!
(Consider, for example a pure red-to-green edge.) We could also detect edges independently
in each band and then take the union of these, but this might lead to thickened or doubled
edges that are hard to link.

A better approach is to compute the oriented energy in each band (Morrone and Burr
1988; Perona and Malik 1990a), e.g., using a second-order steerable filter (Section 3.2.3)
(Freeman and Adelson 1991), and then sum up the orientation-weighted energies and find
their joint best orientation. Unfortunately, the directional derivative of this energy may not
have a closed form solution (as in the case of signed first-order steerable filters), so a simple
zero crossing-based strategy cannot be used. However, the technique described by Elder and
Zucker (1998) can be used to compute these zero crossings numerically instead.

An alternative approach is to estimate local color statistics in regions around each pixel
(Ruzon and Tomasi 2001; Martin, Fowlkes, and Malik 2004). This has the advantage that
more sophisticated techniques (e.g., 3D color histograms) can be used to compare regional
statistics and that additional measures, such as texture, can also be considered. Figure 4.33
shows the output of such detectors.

Of course, many other approaches have been developed for detecting color edges, dating
back to early work by Nevatia (1977). Ruzon and Tomasi (2001) and Gevers, van de Weijer,
and Stokman (2006) provide good reviews of these approaches, which include ideas such as
fusing outputs from multiple channels, using multidimensional gradients, and vector-based

7 Instead of using the raw RGB space, a more perceptually uniform color space such as L*a*b* (see Section 2.3.2)
can be used instead. When trying to match human performance (Martin, Fowlkes, and Malik 2004), this makes sense.
However, in terms of the physics of the underlying image formation and sensing, it may be a questionable strategy.

244 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

methods.

Combining edge feature cues

If the goal of edge detection is to match human boundary detection performance (Bowyer,
Kranenburg, and Dougherty 2001; Martin, Fowlkes, and Malik 2004; Arbelaez, Maire, Fowlkes
et al. 2010), as opposed to simply finding stable features for matching, even better detectors
can be constructed by combining multiple low-level cues such as brightness, color, and tex-
ture.

Martin, Fowlkes, and Malik (2004) describe a system that combines brightness, color, and
texture edges to produce state-of-the-art performance on a database of hand-segmented natu-
ral color images (Martin, Fowlkes, Tal ef al. 2001). First, they construct and train® separate
oriented half-disc detectors for measuring significant differences in brightness (luminance),
color (a* and b* channels, summed responses), and texture (un-normalized filter bank re-
sponses from the work of Malik, Belongie, Leung et al. (2001)). Some of the responses
are then sharpened using a soft non-maximal suppression technique. Finally, the outputs of
the three detectors are combined using a variety of machine-learning techniques, from which
logistic regression is found to have the best tradeoff between speed, space and accuracy .
The resulting system (see Figure 4.33 for some examples) is shown to outperform previously
developed techniques. Maire, Arbelaez, Fowlkes et al. (2008) improve on these results by
combining the detector based on local appearance with a spectral (segmentation-based) de-
tector (Belongie and Malik 1998). In more recent work, Arbeldez, Maire, Fowlkes et al.
(2010) build a hierarchical segmentation on top of this edge detector using a variant of the
watershed algorithm.

4.2.2 Edge linking

While isolated edges can be useful for a variety of applications, such as line detection (Sec-
tion 4.3) and sparse stereo matching (Section 11.2), they become even more useful when
linked into continuous contours.

If the edges have been detected using zero crossings of some function, linking them up
is straightforward, since adjacent edgels share common endpoints. Linking the edgels into
chains involves picking up an unlinked edgel and following its neighbors in both directions.
Either a sorted list of edgels (sorted first by x coordinates and then by y coordinates, for
example) or a 2D array can be used to accelerate the neighbor finding. If edges were not
detected using zero crossings, finding the continuation of an edgel can be tricky. In this
case, comparing the orientation (and, optionally, phase) of adjacent edgels can be used for

8 The training uses 200 labeled images and testing is performed on a different set of 100 images.

4.2 Edges 245

Image

BG
|

TG CG

BG+CG+TG
Y

Figure 4.33 Combined brightness, color, texture boundary detector (Martin, Fowlkes, and
Malik 2004) © 2004 IEEE. Successive rows show the outputs of the brightness gradient
(BG), color gradient (CG), texture gradient (TG), and combined (BG+CG+TG) detectors.
The final row shows human-labeled boundaries derived from a database of hand-segmented
images (Martin, Fowlkes, Tal ez al. 2001).

246 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

A

Figure 4.34 Chain code representation of a grid-aligned linked edge chain. The code is
represented as a series of direction codes, e.g, 0 1 0 7 6 5, which can further be compressed
using predictive and run-length coding.

disambiguation. Ideas from connected component computation can also sometimes be used
to make the edge linking process even faster (see Exercise 4.8).

Once the edgels have been linked into chains, we can apply an optional thresholding
with hysteresis to remove low-strength contour segments (Canny 1986). The basic idea of
hysteresis is to set two different thresholds and allow a curve being tracked above the higher
threshold to dip in strength down to the lower threshold.

Linked edgel lists can be encoded more compactly using a variety of alternative repre-
sentations. A chain code encodes a list of connected points lying on an Ny grid using a
three-bit code corresponding to the eight cardinal directions (N, NE, E, SE, S, SW, W, NW)
between a point and its successor (Figure 4.34). While this representation is more compact
than the original edgel list (especially if predictive variable-length coding is used), it is not
very suitable for further processing.

A more useful representation is the arc length parameterization of a contour, (s), where
s denotes the arc length along a curve. Consider the linked set of edgels shown in Fig-
ure 4.35a. We start at one point (the dot at (1.0, 0.5) in Figure 4.35a) and plot it at coordinate
s = 0 (Figure 4.35b). The next point at (2.0,0.5) gets plotted at s = 1, and the next point
at (2.5, 1.0) gets plotted at s = 1.7071, i.e., we increment s by the length of each edge seg-
ment. The resulting plot can be resampled on a regular (say, integral) s grid before further
processing.

The advantage of the arc-length parameterization is that it makes matching and processing
(e.g., smoothing) operations much easier. Consider the two curves describing similar shapes
shown in Figure 4.36. To compare the curves, we first subtract the average values xy =
fs x(s) from each descriptor. Next, we rescale each descriptor so that s goes from 0 to 1
instead of 0 to S, i.e., we divide x(s) by S. Finally, we take the Fourier transform of each

4.2 Edges 247

3

\ 5 | ‘—0—‘x

2N —=y]

) , \
N Ll N

0\\ L
o 1 2 3 4 01 23 456 7 8 9101

(a) (b)

S

Figure 4.35 Arc-length parameterization of a contour: (a) discrete points along the contour
are first transcribed as (b) (z, y) pairs along the arc length s. This curve can then be regularly
re-sampled or converted into alternative (e.g., Fourier) representations.

Figure 4.36 Matching two contours using their arc-length parameterization. If both curves
are normalized to unit length, s € [0,1] and centered around their centroid g, they will
have the same descriptor up to an overall “temporal” shift (due to different starting points for
s = 0) and a phase (x-y) shift (due to rotation).

248 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

N .
“ﬁ\r\/m Y N

() (b)

Figure 4.37 Curve smoothing with a Gaussian kernel (Lowe 1988) (©) 1998 IEEE: (a) with-
out a shrinkage correction term; (b) with a shrinkage correction term.

(((

Figure 4.38 Changing the character of a curve without affecting its sweep (Finkelstein and
Salesin 1994) © 1994 ACM: higher frequency wavelets can be replaced with exemplars from
a style library to effect different local appearances.

normalized descriptor, treating each @ = (x,y) value as a complex number. If the original
curves are the same (up to an unknown scale and rotation), the resulting Fourier transforms
should differ only by a scale change in magnitude plus a constant complex phase shift, due
to rotation, and a linear phase shift in the domain, due to different starting points for s (see
Exercise 4.9).

Arc-length parameterization can also be used to smooth curves in order to remove digiti-
zation noise. However, if we just apply a regular smoothing filter, the curve tends to shrink
on itself (Figure 4.37a). Lowe (1989) and Taubin (1995) describe techniques that compensate
for this shrinkage by adding an offset term based on second derivative estimates or a larger
smoothing kernel (Figure 4.37b). An alternative approach, based on selectively modifying
different frequencies in a wavelet decomposition, is presented by Finkelstein and Salesin
(1994). In addition to controlling shrinkage without affecting its “sweep”, wavelets allow the
“character” of a curve to be interactively modified, as shown in Figure 4.38.

The evolution of curves as they are smoothed and simplified is related to “grassfire” (dis-

4.2 Edges 249

(b)

(d (e)

Figure 4.39 Image editing in the contour domain (Elder and Goldberg 2001) © 2001 IEEE:
(a) and (d) original images; (b) and (e) extracted edges (edges to be deleted are marked in
white); (c) and (f) reconstructed edited images.

tance) transforms and region skeletons (Section 3.3.3) (Tek and Kimia 2003), and can be used
to recognize objects based on their contour shape (Sebastian and Kimia 2005). More local de-
scriptors of curve shape such as shape contexts (Belongie, Malik, and Puzicha 2002) can also
be used for recognition and are potentially more robust to missing parts due to occlusions.
The field of contour detection and linking continues to evolve rapidly and now includes
techniques for global contour grouping, boundary completion, and junction detection (Maire,
Arbelaez, Fowlkes et al. 2008), as well as grouping contours into likely regions (Arbeléez,
Maire, Fowlkes et al. 2010) and wide-baseline correspondence (Meltzer and Soatto 2008).

4.2.3 Application: Edge editing and enhancement

While edges can serve as components for object recognition or features for matching, they
can also be used directly for image editing.

In fact, if the edge magnitude and blur estimate are kept along with each edge, a visually
similar image can be reconstructed from this information (Elder 1999). Based on this princi-
ple, Elder and Goldberg (2001) propose a system for “image editing in the contour domain”.
Their system allows users to selectively remove edges corresponding to unwanted features
such as specularities, shadows, or distracting visual elements. After reconstructing the image
from the remaining edges, the undesirable visual features have been removed (Figure 4.39).

250 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

@ (b) (©

Figure 4.40 Approximating a curve (shown in black) as a polyline or B-spline: (a) original
curve and a polyline approximation shown in red; (b) successive approximation by recursively
finding points furthest away from the current approximation; (c) smooth interpolating spline,
shown in dark blue, fit to the polyline vertices.

Another potential application is to enhance perceptually salient edges while simplifying
the underlying image to produce a cartoon-like or “pen-and-ink” stylized image (DeCarlo and
Santella 2002). This application is discussed in more detail in Section 10.5.2.

4.3 Lines

While edges and general curves are suitable for describing the contours of natural objects,
the man-made world is full of straight lines. Detecting and matching these lines can be
useful in a variety of applications, including architectural modeling, pose estimation in urban
environments, and the analysis of printed document layouts.

In this section, we present some techniques for extracting piecewise linear descriptions
from the curves computed in the previous section. We begin with some algorithms for approx-
imating a curve as a piecewise-linear polyline. We then describe the Hough transform, which
can be used to group edgels into line segments even across gaps and occlusions. Finally, we
describe how 3D lines with common vanishing points can be grouped together. These van-
ishing points can be used to calibrate a camera and to determine its orientation relative to a
rectahedral scene, as described in Section 6.3.2.

4.3.1 Successive approximation

As we saw in Section 4.2.2, describing a curve as a series of 2D locations x; = x(s;) provides
a general representation suitable for matching and further processing. In many applications,
however, it is preferable to approximate such a curve with a simpler representation, e.g., as a
piecewise-linear polyline or as a B-spline curve (Farin 1996), as shown in Figure 4.40.
Many techniques have been developed over the years to perform this approximation,
which is also known as line simplification. One of the oldest, and simplest, is the one proposed

4.3 Lines 251

F'max

s

“Fmax

X 0 6 360
(@ (b)

Figure 4.41 Original Hough transform: (a) each point votes for a complete family of poten-
tial lines r;(0) = x; cos § + y; sin 6; (b) each pencil of lines sweeps out a sinusoid in (r, 6);
their intersection provides the desired line equation.

by Ramer (1972) and Douglas and Peucker (1973), who recursively subdivide the curve at
the point furthest away from the line joining the two endpoints (or the current coarse polyline
approximation), as shown in Figure 4.40. Hershberger and Snoeyink (1992) provide a more
efficient implementation and also cite some of the other related work in this area.

Once the line simplification has been computed, it can be used to approximate the orig-
inal curve. If a smoother representation or visualization is desired, either approximating or
interpolating splines or curves can be used (Sections 3.5.1 and 5.1.1) (Szeliski and Ito 1986;
Bartels, Beatty, and Barsky 1987; Farin 1996), as shown in Figure 4.40c.

4.3.2 Hough transforms

While curve approximation with polylines can often lead to successful line extraction, lines
in the real world are sometimes broken up into disconnected components or made up of many
collinear line segments. In many cases, it is desirable to group such collinear segments into
extended lines. At a further processing stage (described in Section 4.3.3), we can then group
such lines into collections with common vanishing points.

The Hough transform, named after its original inventor (Hough 1962), is a well-known
technique for having edges “vote” for plausible line locations (Duda and Hart 1972; Ballard
1981; Illingworth and Kittler 1988). In its original formulation (Figure 4.41), each edge point
votes for all possible lines passing through it, and lines corresponding to high accumulator or
bin values are examined for potential line fits.” Unless the points on a line are truly punctate,
a better approach (in my experience) is to use the local orientation information at each edgel
to vote for a single accumulator cell (Figure 4.42), as described below. A hybrid strategy,

° The Hough transform can also be generalized to look for other geometric features such as circles (Ballard
1981), but we do not cover such extensions in this book.

252 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y o Mmax
(XQAH/) og”
/ 0
Tmax
X 0 4 360
) ()

Figure 4.42 Oriented Hough transform: (a) an edgel re-parameterized in polar (r, §) coor-
dinates, with 7o; = (cos 6;,sin ;) and r; = f; - x;; (b) (r, #) accumulator array, showing the
votes for the three edgels marked in red, green, and blue.

>5>

yll

v

Figure 4.43 2D line equation expressed in terms of the normal 7 and distance to the origin
d.

where each edgel votes for a number of possible orientation or location pairs centered around
the estimate orientation, may be desirable in some cases.

Before we can vote for line hypotheses, we must first choose a suitable representation.
Figure 4.43 (copied from Figure 2.2a) shows the normal-distance (7, d) parameterization for
aline. Since lines are made up of edge segments, we adopt the convention that the line normal
7 points in the same direction (i.e., has the same sign) as the image gradient J (x) = VI(x)
(4.19). To obtain a minimal two-parameter representation for lines, we convert the normal
vector into an angle

0 = tan"' n,/n,, (4.26)

as shown in Figure 4.43. The range of possible (6, d) values is [~180°, 180°] x [—v/2,v/2],
assuming that we are using normalized pixel coordinates (2.61) that lie in [—1, 1]. The number
of bins to use along each axis depends on the accuracy of the position and orientation estimate
available at each edgel and the expected line density, and is best set experimentally with some
test runs on sample imagery.

Given the line parameterization, the Hough transform proceeds as shown in Algorithm 4.2.

4.3 Lines 253

procedure Hough({(z,y,0)}):
1. Clear the accumulator array.

2. For each detected edgel at location (z,y) and orientation 6 = tan~' n, /n,,
compute the value of
d=xng +yny

and increment the accumulator corresponding to (6, d).
3. Find the peaks in the accumulator corresponding to lines.

4. Optionally re-fit the lines to the constituent edgels.

Algorithm 4.2 Outline of a Hough transform algorithm based on oriented edge segments.

Note that the original formulation of the Hough transform, which assumed no knowledge of
the edgel orientation 6, has an additional loop inside Step 2 that iterates over all possible
values of § and increments a whole series of accumulators.

There are a lot of details in getting the Hough transform to work well, but these are
best worked out by writing an implementation and testing it out on sample data. Exercise
4.12 describes some of these steps in more detail, including using edge segment lengths or
strengths during the voting process, keeping a list of constituent edgels in the accumulator
array for easier post-processing, and optionally combining edges of different “polarity” into
the same line segments.

An alternative to the 2D polar (6, d) representation for lines is to use the full 3D m =
(71, d) line equation, projected onto the unit sphere. While the sphere can be parameterized
using spherical coordinates (2.8),

1m = (cos 0 cos ¢, sin 0 cos ¢, sin @), 4.27)

this does not uniformly sample the sphere and still requires the use of trigonometry.

An alternative representation can be obtained by using a cube map, i.e., projecting m onto
the face of a unit cube (Figure 4.44a). To compute the cube map coordinate of a 3D vector
m, first find the largest (absolute value) component of m, i.e., m = £ max(|n,|, |n,,|d|),
and use this to select one of the six cube faces. Divide the remaining two coordinates by m
and use these as indices into the cube face. While this avoids the use of trigonometry, it does
require some decision logic.

One advantage of using the cube map, first pointed out by Tuytelaars, Van Gool, and
Proesmans (1997), is that all of the lines passing through a point correspond to line segments

254 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

subspace 1 subspace 2 subspace 3

(a) (b)

Figure 4.44 Cube map representation for line equations and vanishing points: (a) a cube map
surrounding the unit sphere; (b) projecting the half-cube onto three subspaces (Tuytelaars,
Van Gool, and Proesmans 1997) (©) 1997 IEEE.

on the cube faces, which is useful if the original (full voting) variant of the Hough transform
is being used. In their work, they represent the line equation as ax + b + y = 0, which
does not treat the = and y axes symmetrically. Note that if we restrict d > 0 by ignoring the
polarity of the edge orientation (gradient sign), we can use a half-cube instead, which can be
represented using only three cube faces, as shown in Figure 4.44b (Tuytelaars, Van Gool, and
Proesmans 1997).

RANSAC-based line detection. Another alternative to the Hough transform is the RAN-
dom SAmple Consensus (RANSAC) algorithm described in more detail in Section 6.1.4. In
brief, RANSAC randomly chooses pairs of edgels to form a line hypothesis and then tests
how many other edgels fall onto this line. (If the edge orientations are accurate enough, a
single edgel can produce this hypothesis.) Lines with sufficiently large numbers of inliers
(matching edgels) are then selected as the desired line segments.

An advantage of RANSAC is that no accumulator array is needed and so the algorithm can
be more space efficient and potentially less prone to the choice of bin size. The disadvantage
is that many more hypotheses may need to be generated and tested than those obtained by
finding peaks in the accumulator array.

In general, there is no clear consensus on which line estimation technique performs best.
It is therefore a good idea to think carefully about the problem at hand and to implement
several approaches (successive approximation, Hough, and RANSAC) to determine the one
that works best for your application.

4.3.3 Vanishing points

In many scenes, structurally important lines have the same vanishing point because they are
parallel in 3D. Examples of such lines are horizontal and vertical building edges, zebra cross-
ings, railway tracks, the edges of furniture such as tables and dressers, and of course, the
ubiquitous calibration pattern (Figure 4.45). Finding the vanishing points common to such

4.3 Lines 255

EEEEEEEm
(b) ©

Figure 4.45 Real-world vanishing points: (a) architecture (Sinha, Steedly, Szeliski et al.
2008), (b) furniture (Micusik, Wildenauer, and Kosecka 2008) (©) 2008 IEEE, and (c) cali-
bration patterns (Zhang 2000).

line sets can help refine their position in the image and, in certain cases, help determine the
intrinsic and extrinsic orientation of the camera (Section 6.3.2).

Over the years, a large number of techniques have been developed for finding vanishing
points, including (Quan and Mohr 1989; Collins and Weiss 1990; Brillaut-O’Mahoney 1991;
McLean and Kotturi 1995; Becker and Bove 1995; Shufelt 1999; Tuytelaars, Van Gool, and
Proesmans 1997; Schaffalitzky and Zisserman 2000; Antone and Teller 2002; Rother 2002;
Koseckd and Zhang 2005; Pflugfelder 2008; Tardif 2009)—see some of the more recent pa-
pers for additional references. In this section, we present a simple Hough technique based
on having line pairs vote for potential vanishing point locations, followed by a robust least
squares fitting stage. For alternative approaches, please see some of the more recent papers
listed above.

The first stage in my vanishing point detection algorithm uses a Hough transform to accu-
mulate votes for likely vanishing point candidates. As with line fitting, one possible approach
is to have each line vote for all possible vanishing point directions, either using a cube map
(Tuytelaars, Van Gool, and Proesmans 1997; Antone and Teller 2002) or a Gaussian sphere
(Collins and Weiss 1990), optionally using knowledge about the uncertainty in the vanish-
ing point location to perform a weighted vote (Collins and Weiss 1990; Brillaut-O’Mahoney
1991; Shufelt 1999). My preferred approach is to use pairs of detected line segments to form
candidate vanishing point locations. Let 772, and 772, be the (unit norm) line equations for a
pair of line segments and I; and [; be their corresponding segment lengths. The location of
the corresponding vanishing point hypothesis can be computed as

Vij = m; X ’ﬁlj (4.28)
and the corresponding weight set to

wij = [lvg[lil;. (4.29)

256 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.46 Triple product of the line segments endpoints p,, and p,; and the vanishing
point v. The area A is proportional to the perpendicular distance d; and the distance between
the other endpoint p,, and the vanishing point.

This has the desirable effect of downweighting (near-)collinear line segments and short line
segments. The Hough space itself can either be represented using spherical coordinates (4.27)
or as a cube map (Figure 4.44a).

Once the Hough accumulator space has been populated, peaks can be detected in a manner
similar to that previously discussed for line detection. Given a set of candidate line segments
that voted for a vanishing point, which can optionally be kept as a list at each Hough accu-
mulator cell, I then use a robust least squares fit to estimate a more accurate location for each
vanishing point.

Consider the relationship between the two line segment endpoints {p,,, p,;; } and the van-
ishing point v, as shown in Figure 4.46. The area A of the triangle given by these three points,
which is the magnitude of their triple product

Ai = [(pio X Pi1) - v, (4.30)

is proportional to the perpendicular distance d; between each endpoint and the line through
v and the other endpoint, as well as the distance between p,; and v. Assuming that the
accuracy of a fitted line segment is proportional to its endpoint accuracy (Exercise 4.13), this
therefore serves as an optimal metric for how well a vanishing point fits a set of extracted
lines (Leibowitz (2001, Section 3.6.1) and Pflugfelder (2008, Section 2.1.1.3)). A robustified
least squares estimate (Appendix B.3) for the vanishing point can therefore be written as

&= Zp(Ai) =T (Z wz(Az)mlmZT> v =v’ Mo, 4.31)

where m; = p;, x p;; is the segment line equation weighted by its length /;, and w; =
p'(A;)/A; is the influence of each robustified (reweighted) measurement on the final error
(Appendix B.3). Notice how this metric is closely related to the original formula for the pair-
wise weighted Hough transform accumulation step. The final desired value for v is computed
as the least eigenvector of M.

4.4 Additional reading 257

While the technique described above proceeds in two discrete stages, better results may
be obtained by alternating between assigning lines to vanishing points and refitting the van-
ishing point locations (Antone and Teller 2002; KoSeckd and Zhang 2005; Pflugfelder 2008).
The results of detecting individual vanishing points can also be made more robust by simulta-
neously searching for pairs or triplets of mutually orthogonal vanishing points (Shufelt 1999;
Antone and Teller 2002; Rother 2002; Sinha, Steedly, Szeliski et al. 2008). Some results of
such vanishing point detection algorithms can be seen in Figure 4.45.

4.3.4 Application: Rectangle detection

Once sets of mutually orthogonal vanishing points have been detected, it now becomes pos-
sible to search for 3D rectangular structures in the image (Figure 4.47). Over the last decade,
a variety of techniques have been developed to find such rectangles, primarily focused on
architectural scenes (KoSeckd and Zhang 2005; Han and Zhu 2005; Shaw and Barnes 2006;
Micusik, Wildenauer, and KoSecka 2008; Schindler, Krishnamurthy, Lublinerman ez al. 2008).

After detecting orthogonal vanishing directions, KoSeckd and Zhang (2005) refine the
fitted line equations, search for corners near line intersections, and then verify rectangle hy-
potheses by rectifying the corresponding patches and looking for a preponderance of hori-
zontal and vertical edges (Figures 4.47a-b). In follow-on work, Micusik, Wildenauer, and
Kosecka (2008) use a Markov random field (MRF) to disambiguate between potentially over-
lapping rectangle hypotheses. They also use a plane sweep algorithm to match rectangles
between different views (Figures 4.47d-f).

A different approach is proposed by Han and Zhu (2005), who use a grammar of potential
rectangle shapes and nesting structures (between rectangles and vanishing points) to infer the
most likely assignment of line segments to rectangles (Figure 4.47c¢).

4.4 Additional reading

One of the seminal papers on feature detection, description, and matching is by Lowe (2004).
Comprehensive surveys and evaluations of such techniques have been made by Schmid,
Mohr, and Bauckhage (2000); Mikolajczyk and Schmid (2005); Mikolajczyk, Tuytelaars,
Schmid et al. (2005); Tuytelaars and Mikolajczyk (2007) while Shi and Tomasi (1994) and
Triggs (2004) also provide nice reviews.

In the area of feature detectors (Mikolajczyk, Tuytelaars, Schmid et al. 2005), in addition
to such classic approaches as Forstner—Harris (Forstner 1986; Harris and Stephens 1988) and
difference of Gaussians (Lindeberg 1993, 1998b; Lowe 2004), maximally stable extremal re-
gions (MSERs) are widely used for applications that require affine invariance (Matas, Chum,

258 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 4.47 Rectangle detection: (a) indoor corridor and (b) building exterior with grouped
facades (KoSeckd and Zhang 2005) (©) 2005 Elsevier; (c) grammar-based recognition (Han
and Zhu 2005) © 2005 IEEE; (d-f) rectangle matching using a plane sweep algorithm
(Micusik, Wildenauer, and KoSeckd 2008) (©) 2008 IEEE.

Urban et al. 2004; Nistér and Stewénius 2008). More recent interest point detectors are
discussed by Xiao and Shah (2003); Koethe (2003); Carneiro and Jepson (2005); Kenney,
Zuliani, and Manjunath (2005); Bay, Tuytelaars, and Van Gool (2006); Platel, Balmachnova,
Florack et al. (2006); Rosten and Drummond (2006), as well as techniques based on line
matching (Zoghlami, Faugeras, and Deriche 1997; Bartoli, Coquerelle, and Sturm 2004) and
region detection (Kadir, Zisserman, and Brady 2004; Matas, Chum, Urban et al. 2004; Tuyte-
laars and Van Gool 2004; Corso and Hager 2005).

A variety of local feature descriptors (and matching heuristics) are surveyed and com-
pared by Mikolajczyk and Schmid (2005). More recent publications in this area include
those by van de Weijer and Schmid (2006); Abdel-Hakim and Farag (2006); Winder and
Brown (2007); Hua, Brown, and Winder (2007). Techniques for efficiently matching features
include k-d trees (Beis and Lowe 1999; Lowe 2004; Muja and Lowe 2009), pyramid match-
ing kernels (Grauman and Darrell 2005), metric (vocabulary) trees (Nistér and Stewénius
2006), and a variety of multi-dimensional hashing techniques (Shakhnarovich, Viola, and
Darrell 2003; Torralba, Weiss, and Fergus 2008; Weiss, Torralba, and Fergus 2008; Kulis and

4.5 Exercises 259

Grauman 2009; Raginsky and Lazebnik 2009).

The classic reference on feature detection and tracking is (Shi and Tomasi 1994). More
recent work in this field has focused on learning better matching functions for specific features
(Avidan 2001; Jurie and Dhome 2002; Williams, Blake, and Cipolla 2003; Lepetit and Fua
2005; Lepetit, Pilet, and Fua 2006; Hinterstoisser, Benhimane, Navab ef al. 2008; Rogez,
Rihan, Ramalingam et al. 2008; Ozuysal, Calonder, Lepetit et al. 2010).

A highly cited and widely used edge detector is the one developed by Canny (1986).
Alternative edge detectors as well as experimental comparisons can be found in publica-
tions by Nalwa and Binford (1986); Nalwa (1987); Deriche (1987); Freeman and Adelson
(1991); Nalwa (1993); Heath, Sarkar, Sanocki et al. (1998); Crane (1997); Ritter and Wilson
(2000); Bowyer, Kranenburg, and Dougherty (2001); Arbeldez, Maire, Fowlkes et al. (2010).
The topic of scale selection in edge detection is nicely treated by Elder and Zucker (1998),
while approaches to color and texture edge detection can be found in (Ruzon and Tomasi
2001; Martin, Fowlkes, and Malik 2004; Gevers, van de Weijer, and Stokman 2006). Edge
detectors have also recently been combined with region segmentation techniques to further
improve the detection of semantically salient boundaries (Maire, Arbelaez, Fowlkes et al.
2008; Arbeldez, Maire, Fowlkes et al. 2010). Edges linked into contours can be smoothed
and manipulated for artistic effect (Lowe 1989; Finkelstein and Salesin 1994; Taubin 1995)
and used for recognition (Belongie, Malik, and Puzicha 2002; Tek and Kimia 2003; Sebastian
and Kimia 2005).

An early, well-regarded paper on straight line extraction in images was written by Burns,
Hanson, and Riseman (1986). More recent techniques often combine line detection with van-
ishing point detection (Quan and Mohr 1989; Collins and Weiss 1990; Brillaut-O’Mahoney
1991; McLean and Kotturi 1995; Becker and Bove 1995; Shufelt 1999; Tuytelaars, Van Gool,
and Proesmans 1997; Schaffalitzky and Zisserman 2000; Antone and Teller 2002; Rother
2002; Kosecka and Zhang 2005; Pflugfelder 2008; Sinha, Steedly, Szeliski et al. 2008; Tardif
2009).

4.5 Exercises

Ex 4.1: Interest point detector Implement one or more keypoint detectors and compare
their performance (with your own or with a classmate’s detector).
Possible detectors:

e Laplacian or Difference of Gaussian;

e Forstner—Harris Hessian (try different formula variants given in (4.9—4.11));

260 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

e oriented/steerable filter, looking for either second-order high second response or two
edges in a window (Koethe 2003), as discussed in Section 4.1.1.

Other detectors are described by Mikolajczyk, Tuytelaars, Schmid et al. (2005); Tuytelaars
and Mikolajczyk (2007). Additional optional steps could include:

1. Compute the detections on a sub-octave pyramid and find 3D maxima.

2. Find local orientation estimates using steerable filter responses or a gradient histogram-
ming method.

3. Implement non-maximal suppression, such as the adaptive technique of Brown, Szeliski,
and Winder (2005).

4. Vary the window shape and size (pre-filter and aggregation).

To test for repeatability, download the code from http://www.robots.ox.ac.uk/~vgg/research/
affine/ (Mikolajczyk, Tuytelaars, Schmid et al. 2005; Tuytelaars and Mikolajczyk 2007) or
simply rotate or shear your own test images. (Pick a domain you may want to use later, e.g.,
for outdoor stitching.)

Be sure to measure and report the stability of your scale and orientation estimates.

Ex 4.2: Interest point descriptor Implement one or more descriptors (steered to local scale
and orientation) and compare their performance (with your own or with a classmate’s detec-
tor).

Some possible descriptors include

e contrast-normalized patches (Brown, Szeliski, and Winder 2005);
e SIFT (Lowe 2004);

e GLOH (Mikolajczyk and Schmid 2005);

e DAISY (Winder and Brown 2007; Tola, Lepetit, and Fua 2010).

Other detectors are described by Mikolajczyk and Schmid (2005).

Ex 4.3: ROC curve computation Given a pair of curves (histograms) plotting the number
of matching and non-matching features as a function of Euclidean distance d as shown in
Figure 4.23b, derive an algorithm for plotting a ROC curve (Figure 4.23a). In particular, let
t(d) be the distribution of true matches and f(d) be the distribution of (false) non-matches.
Write down the equations for the ROC, i.e., TPR(FPR), and the AUC.

(Hint: Plot the cumulative distributions 7'(d) = [¢(d) and F(d) = [f(d) and see if
these help you derive the TPR and FPR at a given threshold 6.)

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/

4.5 Exercises 261

Ex 4.4: Feature matcher After extracting features from a collection of overlapping or dis-
torted images,'? match them up by their descriptors either using nearest neighbor matching
or a more efficient matching strategy such as a k-d tree.

See whether you can improve the accuracy of your matches using techniques such as the
nearest neighbor distance ratio.

Ex 4.5: Feature tracker Instead of finding feature points independently in multiple images
and then matching them, find features in the first image of a video or image sequence and
then re-locate the corresponding points in the next frames using either search and gradient
descent (Shi and Tomasi 1994) or learned feature detectors (Lepetit, Pilet, and Fua 2006;
Fossati, Dimitrijevic, Lepetit et al. 2007). When the number of tracked points drops below a
threshold or new regions in the image become visible, find additional points to track.

(Optional) Winnow out incorrect matches by estimating a homography (6.19-6.23) or
fundamental matrix (Section 7.2.1).

(Optional) Refine the accuracy of your matches using the iterative registration algorithm
described in Section 8.2 and Exercise 8.2.

Ex 4.6: Facial feature tracker Apply your feature tracker to tracking points on a person’s
face, either manually initialized to interesting locations such as eye corners or automatically
initialized at interest points.

(Optional) Match features between two people and use these features to perform image
morphing (Exercise 3.25).

Ex 4.7: Edge detector Implement an edge detector of your choice. Compare its perfor-
mance to that of your classmates’ detectors or code downloaded from the Internet.
A simple but well-performing sub-pixel edge detector can be created as follows:

1. Blur the input image a little,

2. Construct a Gaussian pyramid (Exercise 3.19),

P = Pyramid{B,(x)}

3. Subtract an interpolated coarser-level pyramid image from the original resolution blurred
image,
S(z) = B,(x) — PInterpolatedLevel(L).

10 http://www.robots.ox.ac.uk/~vgg/research/affine/.

http://www.robots.ox.ac.uk/~vgg/research/affine/

262 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

struct SEdgel {

float e[2][2]; // edgel endpoints (zero crossing)

float x, y; // sub-pixel edge position (midpoint)
float n_x, n_y; // orientation, as normal vector

float theta; // orientation, as angle (degrees)

float length; // length of edgel

float strength; // strength of edgel (gradient magnitude)

}i

struct SLine : public SEdgel {
float line_length; // length of line (est. from ellipsoid)
float sigma; // estimated std. dev. of edgel noise
float r; // line equation: X * n_y — y * N_X = r

}i

Figure 4.48 A potential C++ structure for edgel and line elements.

4. For each quad of pixels, {(¢,7), (¢ + 1,7), (i, + 1), (¢ + 1,7 + 1)}, count the number
of zero crossings along the four edges.

5. When there are exactly two zero crossings, compute their locations using (4.25) and
store these edgel endpoints along with the midpoint in the edgel structure (Figure 4.48).

6. For each edgel, compute the local gradient by taking the horizontal and vertical differ-
ences between the values of S along the zero crossing edges.

7. Store the magnitude of this gradient as the edge strength and either its orientation or
that of the segment joining the edgel endpoints as the edge orientation.

8. Add the edgel to a list of edgels or store it in a 2D array of edgels (addressed by pixel
coordinates).

Figure 4.48 shows a possible representation for each computed edgel.

Ex 4.8: Edge linking and thresholding Link up the edges computed in the previous exer-
cise into chains and optionally perform thresholding with hysteresis.
The steps may include:

1. Store the edgels either in a 2D array (say, an integer image with indices into the edgel
list) or pre-sort the edgel list first by (integer) x coordinates and then y coordinates, for
faster neighbor finding.

4.5 Exercises 263

2. Pick up an edgel from the list of unlinked edgels and find its neighbors in both direc-
tions until no neighbor is found or a closed contour is obtained. Flag edgels as linked
as you visit them and push them onto your list of linked edgels.

3. Alternatively, generalize a previously developed connected component algorithm (Ex-
ercise 3.14) to perform the linking in just two raster passes.

4. (Optional) Perform hysteresis-based thresholding (Canny 1986). Use two thresholds
”hi” and lo” for the edge strength. A candidate edgel is considered an edge if either
its strength is above the "hi” threshold or its strength is above the ’1o” threshold and it
is (recursively) connected to a previously detected edge.

5. (Optional) Link together contours that have small gaps but whose endpoints have sim-
ilar orientations.

6. (Optional) Find junctions between adjacent contours, e.g., using some of the ideas (or
references) from Maire, Arbelaez, Fowlkes et al. (2008).

Ex 4.9: Contour matching Convert a closed contour (linked edgel list) into its arc-length
parameterization and use this to match object outlines.
The steps may include:

1. Walk along the contour and create a list of (x;,vy;, s;) triplets, using the arc-length
formula

Si+1 = S5 + ||$1'+1 — :E1|| (432)

2. Resample this list onto a regular set of (z;,y;,j) samples using linear interpolation of
each segment.

3. Compute the average values of z and y, i.e., T and ¥ and subtract them from your
sampled curve points.

4. Resample the original (z;,y;, s;) piecewise-linear function onto a length-independent
set of samples, say j € [0,1023]. (Using a length which is a power of two makes
subsequent Fourier transforms more convenient.)

5. Compute the Fourier transform of the curve, treating each (z,y) pair as a complex
number.

6. To compare two curves, fit a linear equation to the phase difference between the two
curves. (Careful: phase wraps around at 360°. Also, you may wish to weight samples
by their Fourier spectrum magnitude—see Section 8.1.2.)

264 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

7. (Optional) Prove that the constant phase component corresponds to the temporal shift
in s, while the linear component corresponds to rotation.

Of course, feel free to try any other curve descriptor and matching technique from the com-
puter vision literature (Tek and Kimia 2003; Sebastian and Kimia 2005).

Ex 4.10: Jigsaw puzzle solver—challenging Write a program to automatically solve a jig-
saw puzzle from a set of scanned puzzle pieces. Your software may include the following
components:

1. Scan the pieces (either face up or face down) on a flatbed scanner with a distinctively
colored background.

2. (Optional) Scan in the box top to use as a low-resolution reference image.
3. Use color-based thresholding to isolate the pieces.
4. Extract the contour of each piece using edge finding and linking.

5. (Optional) Re-represent each contour using an arc-length or some other re-parameterization.
Break up the contours into meaningful matchable pieces. (Is this hard?)

6. (Optional) Associate color values with each contour to help in the matching.

7. (Optional) Match pieces to the reference image using some rotationally invariant fea-
ture descriptors.

8. Solve a global optimization or (backtracking) search problem to snap pieces together
and place them in the correct location relative to the reference image.

9. Test your algorithm on a succession of more difficult puzzles and compare your results
with those of others.

Ex 4.11: Successive approximation line detector Implement a line simplification algorithm
(Section 4.3.1) (Ramer 1972; Douglas and Peucker 1973) to convert a hand-drawn curve (or
linked edge image) into a small set of polylines.

(Optional) Re-render this curve using either an approximating or interpolating spline or
Bezier curve (Szeliski and Ito 1986; Bartels, Beatty, and Barsky 1987; Farin 1996).

Ex 4.12: Hough transform line detector Implement a Hough transform for finding lines
in images:

4.5 Exercises 265

1. Create an accumulator array of the appropriate user-specified size and clear it. The user
can specify the spacing in degrees between orientation bins and in pixels between dis-
tance bins. The array can be allocated as integer (for simple counts), floating point (for
weighted counts), or as an array of vectors for keeping back pointers to the constituent
edges.

2. For each detected edgel at location (z,y) and orientation = tan~' n, /n,, compute
the value of
d=xng +yny (4.33)

and increment the accumulator corresponding to (6, d).

(Optional) Weight the vote of each edge by its length (see Exercise 4.7) or the strength
of its gradient.

3. (Optional) Smooth the scalar accumulator array by adding in values from its immediate
neighbors. This can help counteract the discretization effect of voting for only a single
bin—see Exercise 3.7.

4. Find the largest peaks (local maxima) in the accumulator corresponding to lines.

5. (Optional) For each peak, re-fit the lines to the constituent edgels, using total least
squares (Appendix A.2). Use the original edgel lengths or strength weights to weight
the least squares fit, as well as the agreement between the hypothesized line orienta-
tion and the edgel orientation. Determine whether these heuristics help increase the
accuracy of the fit.

6. After fitting each peak, zero-out or eliminate that peak and its adjacent bins in the array,
and move on to the next largest peak.

Test out your Hough transform on a variety of images taken indoors and outdoors, as well
as checkerboard calibration patterns.

For checkerboard patterns, you can modify your Hough transform by collapsing antipodal
bins (6 + 180°, —d) with (6, d) to find lines that do not care about polarity changes. Can you
think of examples in real-world images where this might be desirable as well?

Ex 4.13: Line fitting uncertainty Estimate the uncertainty (covariance) in your line fit us-
ing uncertainty analysis.

1. After determining which edgels belong to the line segment (using either successive
approximation or Hough transform), re-fit the line segment using total least squares
(Van Huffel and Vandewalle 1991; Van Huffel and Lemmerling 2002), i.e., find the
mean or centroid of the edgels and then use eigenvalue analysis to find the dominant
orientation.

266 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

2. Compute the perpendicular errors (deviations) to the line and robustly estimate the
variance of the fitting noise using an estimator such as MAD (Appendix B.3).

3. (Optional) re-fit the line parameters by throwing away outliers or using a robust norm
or influence function.

4. Estimate the error in the perpendicular location of the line segment and its orientation.

Ex 4.14: Vanishing points Compute the vanishing points in an image using one of the tech-
niques described in Section 4.3.3 and optionally refine the original line equations associated
with each vanishing point. Your results can be used later to track a target (Exercise 6.5) or
reconstruct architecture (Section 12.6.1).

Ex 4.15: Vanishing point uncertainty Perform an uncertainty analysis on your estimated
vanishing points. You will need to decide how to represent your vanishing point, e.g., homo-
geneous coordinates on a sphere, to handle vanishing points near infinity.

See the discussion of Bingham distributions by Collins and Weiss (1990) for some ideas.

5.1

52

53

54

5.5

5.6
5.7

Chapter 5

Segmentation

Active contourso 270
5.1 Snakes ... 270
5.1.2 Dynamic snakes and CONDENSATION 276
SI3 SCISSOIS . . oo u o 280
S04 LevelSets o 281
5.1.5 Application: Contour tracking and rotoscoping 282
Splitand merge e e 284
521 Watershed o 284
5.2.2 Region splitting (divisive clustering) 286
5.2.3 Region merging (agglomerative clustering) 286
5.2.4 Graph-based segmentation 286
5.2.5 Probabilistic aggregation 288
Mean shift and mode finding L. 289
5.3.1 K-means and mixtures of Gaussians 289
532 Meanshift Lo 292
Normalizedcuts e 296
Graph cuts and energy-based methods 300
5.5.1 Application: Medical image segmentation 304
Additional reading 305
Exercises 306

268 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

)

Figure 5.1 Some popular image segmentation techniques: (a) active contours (Isard and
Blake 1998) © 1998 Springer; (b) level sets (Cremers, Rousson, and Deriche 2007) (©
2007 Springer; (c) graph-based merging (Felzenszwalb and Huttenlocher 2004b) (© 2004
Springer; (d) mean shift (Comaniciu and Meer 2002) (©) 2002 IEEE; (e) texture and interven-
ing contour-based normalized cuts (Malik, Belongie, Leung et al. 2001) (©) 2001 Springer;
(f) binary MRF solved using graph cuts (Boykov and Funka-Lea 2006) (©) 2006 Springer.

5 Segmentation 269

Image segmentation is the task of finding groups of pixels that “go together”. In statistics, this
problem is known as cluster analysis and is a widely studied area with hundreds of different
algorithms (Jain and Dubes 1988; Kaufman and Rousseeuw 1990; Jain, Duin, and Mao 2000;
Jain, Topchy, Law et al. 2004).

In computer vision, image segmentation is one of the oldest and most widely studied prob-
lems (Brice and Fennema 1970; Pavlidis 1977; Riseman and Arbib 1977; Ohlander, Price,
and Reddy 1978; Rosenfeld and Davis 1979; Haralick and Shapiro 1985). Early techniques
tend to use region splitting or merging (Brice and Fennema 1970; Horowitz and Pavlidis 1976;
Ohlander, Price, and Reddy 1978; Pavlidis and Liow 1990), which correspond to divisive and
agglomerative algorithms in the clustering literature (Jain, Topchy, Law et al. 2004). More
recent algorithms often optimize some global criterion, such as intra-region consistency and
inter-region boundary lengths or dissimilarity (Leclerc 1989; Mumford and Shah 1989; Shi
and Malik 2000; Comaniciu and Meer 2002; Felzenszwalb and Huttenlocher 2004b; Cremers,
Rousson, and Deriche 2007).

We have already seen examples of image segmentation in Sections 3.3.2 and 3.7.2. In
this chapter, we review some additional techniques that have been developed for image seg-
mentation. These include algorithms based on active contours (Section 5.1) and level sets
(Section 5.1.4), region splitting and merging (Section 5.2), mean shift (mode finding) (Sec-
tion 5.3), normalized cuts (splitting based on pixel similarity metrics) (Section 5.4), and bi-
nary Markov random fields solved using graph cuts (Section 5.5). Figure 5.1 shows some
examples of these techniques applied to different images.

Since the literature on image segmentation is so vast, a good way to get a handle on some
of the better performing algorithms is to look at experimental comparisons on human-labeled
databases (Arbeldez, Maire, Fowlkes et al. 2010). The best known of these is the Berkeley
Segmentation Dataset and Benchmark' (Martin, Fowlkes, Tal et al. 2001), which consists
of 1000 images from a Corel image dataset that were hand-labeled by 30 human subjects.
Many of the more recent image segmentation algorithms report comparative results on this
database. For example, Unnikrishnan, Pantofaru, and Hebert (2007) propose new metrics
for comparing such algorithms. Estrada and Jepson (2009) compare four well-known seg-
mentation algorithms on the Berkeley data set and conclude that while their own SE-MinCut
algorithm (Estrada, Jepson, and Chennubhotla 2004) algorithm outperforms the others by a
small margin, there still exists a wide gap between automated and human segmentation per-
formance.> A new database of foreground and background segmentations, used by Alpert,
Galun, Basri er al. (2007), is also available.?

! http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

2 An interesting observation about their ROC plots is that automated techniques cluster tightly along similar
curves, but human performance is all over the map.

3 http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/index.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/index.html

270 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

5.1 Active contours

While lines, vanishing points, and rectangles are commonplace in the man-made world,
curves corresponding to object boundaries are even more common, especially in the natural
environment. In this section, we describe three related approaches to locating such boundary
curves in images.

The first, originally called snakes by its inventors (Kass, Witkin, and Terzopoulos 1988)
(Section 5.1.1), is an energy-minimizing, two-dimensional spline curve that evolves (moves)
towards image features such as strong edges. The second, intelligent scissors (Mortensen
and Barrett 1995) (Section 5.1.3), allow the user to sketch in real time a curve that clings to
object boundaries. Finally, level set techniques (Section 5.1.4) evolve the curve as the zero-
set of a characteristic function, which allows them to easily change topology and incorporate
region-based statistics.

All three of these are examples of active contours (Blake and Isard 1998; Mortensen
1999), since these boundary detectors iteratively move towards their final solution under the
combination of image and optional user-guidance forces.

5.1.1 Snakes

Snakes are a two-dimensional generalization of the 1D energy-minimizing splines first intro-
duced in Section 3.7.1,

Eint =/a(S)IIfs(S)H2+ﬁ(8)||fss(8)||2ds> CRY)

where s is the arc-length along the curve f(s) = (z(s),y(s)) and «(s) and (3(s) are first-
and second-order continuity weighting functions analogous to the s(z,y) and ¢(z,y) terms
introduced in (3.100-3.101). We can discretize this energy by sampling the initial curve
position evenly along its length (Figure 4.35) to obtain

By = Z0!(Z')|\J"(i+1)*J‘(Z‘)IIQ/h2 (5.2)
+ B +1) = 2f(0) + f(i — D/,

where h is the step size, which can be neglected if we resample the curve along its arc-length
after each iteration.

In addition to this internal spline energy, a snake simultaneously minimizes external
image-based and constraint-based potentials. The image-based potentials are the sum of sev-
eral terms

Eimage = Wiine€line + wedgegedge + WeermEterm, (5.3)

5.1 Active contours 271

(a) (b)

Figure 5.2 Snakes (Kass, Witkin, and Terzopoulos 1988) (©) 1988 Springer: (a) the “snake
pit” for interactively controlling shape; (b) lip tracking.

where the line term attracts the snake to dark ridges, the edge term attracts it to strong gradi-
ents (edges), and the ferm term attracts it to line terminations. In practice, most systems only
use the edge term, which can either be directly proportional to the image gradients,

Eeage =) ~|IVI(f())I, (5.4

i

or to a smoothed version of the image Laplacian,

Eeage = Y, ~1(Go + V2D)(£ (i) (5.5)
i
People also sometimes extract edges and then use a distance map to the edges as an alternative
to these two originally proposed potentials.
In interactive applications, a variety of user-placed constraints can also be added, e.g.,
attractive (spring) forces towards anchor points d(3),

Egpring = kill £ (i) — d(2)|]?, (5.6)

as well as repulsive 1/r (“volcano”) forces (Figure 5.2a). As the snakes evolve by minimiz-
ing their energy, they often “wiggle” and “slither”, which accounts for their popular name.
Figure 5.2b shows snakes being used to track a person’s lips.

Because regular snakes have a tendency to shrink (Exercise 5.1), it is usually better to
initialize them by drawing the snake outside the object of interest to be tracked. Alterna-
tively, an expansion ballooning force can be added to the dynamics (Cohen and Cohen 1993),
essentially moving each point outwards along its normal.

To efficiently solve the sparse linear system arising from snake energy minimization, a
sparse direct solver (Appendix A.4) can be used, since the linear system is essentially penta-
diagonal.* Snake evolution is usually implemented as an alternation between this linear sys-

4 A closed snake has a Toeplitz matrix form, which can still be factored and solved in O(NV) time.

272 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 5.3 Elastic net: The open squares indicate the cities and the closed squares linked by
straight line segments are the tour points. The blue circles indicate the approximate extent of
the attraction force of each city, which is reduced over time. Under the Bayesian interpretation
of the elastic net, the blue circles correspond to one standard deviation of the circular Gaussian
that generates each city from some unknown tour point.

tem solution and the linearization of non-linear constraints such as edge energy. A more direct
way to find a global energy minimum is to use dynamic programming (Amini, Weymouth,
and Jain 1990; Williams and Shah 1992), but this is not often used in practice, since it has
been superseded by even more efficient or interactive algorithms such as intelligent scissors
(Section 5.1.3) and GrabCut (Section 5.5).

Elastic nets and slippery springs

An interesting variant on snakes, first proposed by Durbin and Willshaw (1987) and later
re-formulated in an energy-minimizing framework by Durbin, Szeliski, and Yuille (1989), is
the elastic net formulation of the Traveling Salesman Problem (TSP). Recall that in a TSP,
the salesman must visit each city once while minimizing the total distance traversed. A snake
that is constrained to pass through each city could solve this problem (without any optimality
guarantees) but it is impossible to tell ahead of time which snake control point should be
associated with each city.

Instead of having a fixed constraint between snake nodes and cities, as in (5.6), a city is
assumed to pass near some point along the tour (Figure 5.3). In a probabilistic interpretation,
each city is generated as a mixture of Gaussians centered at each tour point,

. . _d2. /(202
p(d(j) = pij with p;j = e~ %/ 27 (5.7)

(2

where o is the standard deviation of the Gaussian and

dij = | £(@) = d()]l (5.8)

5.1 Active contours 273

is the Euclidean distance between a tour point f(¢) and a city location d(j). The correspond-
ing data fitting energy (negative log likelihood) is

Euippery = — 3 logp(d(j)) = = Y log [} e IFO-dI*2] - (59)
J J

This energy derives its name from the fact that, unlike a regular spring, which couples a
given snake point to a given constraint (5.6), this alternative energy defines a slippery spring
that allows the association between constraints (cities) and curve (tour) points to evolve over
time (Szeliski 1989). Note that this is a soft variant of the popular iterated closest point
data constraint that is often used in fitting or aligning surfaces to data points or to each other
(Section 12.2.1) (Besl and McKay 1992; Zhang 1994).

To compute a good solution to the TSP, the slippery spring data association energy is
combined with a regular first-order internal smoothness energy (5.3) to define the cost of a
tour. The tour f(s) is initialized as a small circle around the mean of the city points and o is
progressively lowered (Figure 5.3). For large o values, the tour tries to stay near the centroid
of the points but as o decreases each city pulls more and more strongly on its closest tour
points (Durbin, Szeliski, and Yuille 1989). In the limit as ¢ — 0, each city is guaranteed to
capture at least one tour point and the tours between subsequent cites become straight lines.

Splines and shape priors

While snakes can be very good at capturing the fine and irregular detail in many real-world
contours, they sometimes exhibit too many degrees of freedom, making it more likely that
they can get trapped in local minima during their evolution.

One solution to this problem is to control the snake with fewer degrees of freedom through
the use of B-spline approximations (Menet, Saint-Marc, and Medioni 1990b,a; Cipolla and
Blake 1990). The resulting B-snake can be written as

f(s) = Bi(s)ms (5.10)
k
or in discrete form as
F=BX (5.11)
with
£7(0) By(so) Bk (so0) 27 (0)
F = , B= , and X =
1) Bo(sn) Bk(sn) z"(K)

274 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

I ! : II || I { | ol 1 it
i?fl i'J 'LlLJ 'HJI IJI' I||'J llr -‘J I\lr. "'.‘:‘ i " ..‘ |
u 1 | | I 3 L4 (z
0 o _ 1 ot
N o Ii. | |
YYYTY ‘llrjl YYY , S by 20

Figure 5.4 Point distribution model for a set of resistors (Cootes, Cooper, Taylor et al.
1995) (© 1995 Elsevier: (a) set of input resistor shapes; (b) assignment of control points
to the boundary; (c) distribution (scatter plot) of point locations; (d) first (largest) mode of
variation in the ensemble shapes.

If the object being tracked or recognized has large variations in location, scale, or ori-
entation, these can be modeled as an additional transformation on the control points, e.g.,
x) = sRx;, + t (2.18), which can be estimated at the same time as the values of the control
points. Alternatively, separate detection and alignment stages can be run to first localize and
orient the objects of interest (Cootes, Cooper, Taylor et al. 1995).

In a B-snake, because the snake is controlled by fewer degrees of freedom, there is less
need for the internal smoothness forces used with the original snakes, although these can still
be derived and implemented using finite element analysis, i.e., taking derivatives and integrals
of the B-spline basis functions (Terzopoulos 1983; Bathe 2007).

In practice, it is more common to estimate a set of shape priors on the typical distribution
of the control points {x} (Cootes, Cooper, Taylor et al. 1995). Consider the set of resistor
shapes shown in Figure 5.4a. If we describe each contour with the set of control points
shown in Figure 5.4b, we can plot the distribution of each point in a scatter plot, as shown in
Figure 5.4c.

One potential way of describing this distribution would be by the location Z; and 2D
covariance C'; of each individual point x;. These could then be turned into a quadratic
penalty (prior energy) on the point location,

1
Eloc(wk) = 5(:1% — J_Zk)TC;I(QZk — il_,'k). (513)

In practice, however, the variation in point locations is usually highly correlated.

A preferable approach is to estimate the joint covariance of all the points simultaneously.
First, concatenate all of the point locations {x } into a single vector x, e.g., by interleaving
the x and y locations of each point. The distribution of these vectors across all training

5.1 Active contours 275

56666 .
Ho6EE Tl
56668

56666

Figure 5.5 Active Shape Model (ASM): (a) the effect of varying the first four shape param-
eters for a set of faces (Cootes, Taylor, Lanitis e al. 1993) © 1993 IEEE; (b) searching for
the strongest gradient along the normal to each control point (Cootes, Cooper, Taylor et al.
1995) (© 1995 Elsevier.

(b)

examples (Figure 5.4a) can be described with a mean & and a covariance
1 _ —
Cc=5 Z(mp —Z)(z, —x)7, (5.14)
P

where x,, are the P training examples. Using eigenvalue analysis (Appendix A.1.2), which is
also known as Principal Component Analysis (PCA) (Appendix B.1.1), the covariance matrix
can be written as,

C = ®diag(\o... \g_1) ®7. (5.15)

In most cases, the likely appearance of the points can be modeled using only a few eigen-
vectors with the largest eigenvalues. The resulting point distribution model (Cootes, Taylor,
Lanitis et al. 1993; Cootes, Cooper, Taylor et al. 1995) can be written as

x=T+db, (5.16)

where b is an M < K element shape parameter vector and & are the first m columns of .
To constrain the shape parameters to reasonable values, we can use a quadratic penalty of the
form

1
Ehape = 5bT diag(\o ... A1) b= Z b2, /2. (5.17)

Alternatively, the range of allowable b,, values can be limited to some range, e.g., |by| <
3v/Am (Cootes, Cooper, Taylor et al. 1995). Alternative approaches for deriving a set of
shape vectors are reviewed by Isard and Blake (1998).

276 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Varying the individual shape parameters b,,, over the range —2v/\,,, < 2v/\,,, can give
a good indication of the expected variation in appearance, as shown in Figure 5.4d. Another
example, this time related to face contours, is shown in Figure 5.5a.

In order to align a point distribution model with an image, each control point searches
in a direction normal to the contour to find the most likely corresponding image edge point
(Figure 5.5b). These individual measurements can be combined with priors on the shape
parameters (and, if desired, position, scale, and orientation parameters) to estimate a new set
of parameters. The resulting Active Shape Model (ASM) can be iteratively minimized to fit
images to non-rigidly deforming objects such as medical images or body parts such as hands
(Cootes, Cooper, Taylor et al. 1995). The ASM can also be combined with a PCA analysis of
the underlying gray-level distribution to create an Active Appearance Model (AAM) (Cootes,
Edwards, and Taylor 2001), which we discuss in more detail in Section 14.2.2.

5.1.2 Dynamic snakes and CONDENSATION

In many applications of active contours, the object of interest is being tracked from frame
to frame as it deforms and evolves. In this case, it makes sense to use estimates from the
previous frame to predict and constrain the new estimates.

One way to do this is to use Kalman filtering, which results in a formulation called Kalman
snakes (Terzopoulos and Szeliski 1992; Blake, Curwen, and Zisserman 1993). The Kalman
filter is based on a linear dynamic model of shape parameter evolution,

Ty = Awt,1 + Wi, (518)

where x; and x;_; are the current and previous state variables, A is the linear transition
matrix, and w is a noise (perturbation) vector, which is often modeled as a Gaussian (Gelb
1974). The matrices A and the noise covariance can be learned ahead of time by observing
typical sequences of the object being tracked (Blake and Isard 1998).

The qualitative behavior of the Kalman filter can be seen in Figure 5.6a. The linear dy-
namic model causes a deterministic change (drift) in the previous estimate, while the process
noise (perturbation) causes a stochastic diffusion that increases the system entropy (lack of
certainty). New measurements from the current frame restore some of the certainty (peaked-
ness) in the updated estimate.

In many situations, however, such as when tracking in clutter, a better estimate for the
contour can be obtained if we remove the assumptions that the distribution are Gaussian,
which is what the Kalman filter requires. In this case, a general multi-modal distribution is
propagated, as shown in Figure 5.6b. In order to model such multi-modal distributions, Isard
and Blake (1998) introduced the use of particle filtering to the computer vision community.’

5 Alternatives to modeling multi-modal distributions include mixtures of Gaussians (Bishop 2006) and multiple

5.1 Active contours 277

Y —

—
/ detenministic drift ‘\

pixi

S
>

stochastic diffusion

pix)

[

pixl pixl

’
:

stochastic diffusion

pix) = pixl

B
:

\ﬂcmr effect of measurement /

— e

(b)

Figure 5.6 Probability density propagation (Isard and Blake 1998) (© 1998 Springer. At
the beginning of each estimation step, the probability density is updated according to the
linear dynamic model (deterministic drift) and its certainty is reduced due to process noise
(stochastic diffusion). New measurements introduce additional information that helps refine
the current estimate. (a) The Kalman filter models the distributions as uni-modal, i.e., using a
mean and covariance. (b) Some applications require more general multi-modal distributions.

278 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

A oo
Probability — posterior
density

@ weighted

__________,'d’/"f’,’-_._ﬂ"//".\\\\\\‘,////’H__,df"-“ﬁ-“jjiiifi__

@ P @O ’. o State ¥

-

(a)
(n}
Skt Tkt
L)
drift
——(D i
diffuse
observation
density
E— measure

n)__im
Sy T

(b)

Figure 5.7 Factored sampling using particle filter in the CONDENSATION algorithm (Is-
ard and Blake 1998) (©) 1998 Springer: (a) each density distribution is represented using a
superposition of weighted particles; (b) the drift-diffusion-measurement cycle implemented
using random sampling, perturbation, and re-weighting stages.

5.1 Active contours 79

(ECLECEE

(b) (©)

Figure 5.8 Head tracking using CONDENSATION (Isard and Blake 1998) (© 1998
Springer: (a) sample set representation of head estimate distribution; (b) multiple measure-
ments at each control vertex location; (c) multi-hypothesis tracking over time.

Particle filtering techniques represent a probability distribution using a collection of weighted
point samples (Figure 5.7a) (Andrieu, de Freitas, Doucet et al. 2003; Bishop 2006; Koller
and Friedman 2009). To update the locations of the samples according to the linear dy-
namics (deterministic drift), the centers of the samples are updated according to (5.18) and
multiple samples are generated for each point (Figure 5.7b). These are then perturbed to
account for the stochastic diffusion, i.e., their locations are moved by random vectors taken
from the distribution of w.® Finally, the weights of these samples are multiplied by the mea-
surement probability density, i.e., we take each sample and measure its likelihood given the
current (new) measurements. Because the point samples represent and propagate conditional
estimates of the multi-modal density, Isard and Blake (1998) dubbed their algorithm CONdi-
tional DENSity propag ATION or CONDENSATION.

Figure 5.8a shows what a factored sample of a head tracker might look like, drawing
a red B-spline contour for each of (a subset of) the particles being tracked. Figure 5.8b
shows why the measurement density itself is often multi-modal: the locations of the edges
perpendicular to the spline curve can have multiple local maxima due to background clutter.
Finally, Figure 5.8c shows the temporal evolution of the conditional density (x coordinate of
the head and shoulder tracker centroid) as it tracks several people over time.

hypothesis tracking (Bar-Shalom and Fortmann 1988; Cham and Rehg 1999).
6 Note that because of the structure of these steps, non-linear dynamics and non-Gaussian noise can be used.

280 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

Figure 5.9 Intelligent scissors: (a) as the mouse traces the white path, the scissors follow
the orange path along the object boundary (the green curves show intermediate positions)
(Mortensen and Barrett 1995) © 1995 ACM; (b) regular scissors can sometimes jump to a
stronger (incorrect) boundary; (c) after training to the previous segment, similar edge profiles
are preferred (Mortensen and Barrett 1998) (©) 1995 Elsevier.

5.1.3 Scissors

Active contours allow a user to roughly specify a boundary of interest and have the system
evolve the contour towards a more accurate location as well as track it over time. The results
of this curve evolution, however, may be unpredictable and may require additional user-based
hints to achieve the desired result.

An alternative approach is to have the system optimize the contour in real time as the
user is drawing (Mortensen 1999). The intelligent scissors system developed by Mortensen
and Barrett (1995) does just that. As the user draws a rough outline (the white curve in
Figure 5.9a), the system computes and draws a better curve that clings to high-contrast edges
(the orange curve).

To compute the optimal curve path (live-wire), the image is first pre-processed to associate
low costs with edges (links between neighboring horizontal, vertical, and diagonal, i.e., N3
neighbors) that are likely to be boundary elements. Their system uses a combination of zero-
crossing, gradient magnitudes, and gradient orientations to compute these costs.

Next, as the user traces a rough curve, the system continuously recomputes the lowest-
cost path between the starting seed point and the current mouse location using Dijkstra’s al-
gorithm, a breadth-first dynamic programming algorithm that terminates at the current target
location.

In order to keep the system from jumping around unpredictably, the system will “freeze”
the curve to date (reset the seed point) after a period of inactivity. To prevent the live wire
from jumping onto adjacent higher-contrast contours, the system also “learns” the intensity

5.1 Active contours 281
a(h)

V¢

$=0

Figure 5.10 Level set evolution for a geodesic active contour. The embedding function ¢
is updated based on the curvature of the underlying surface modulated by the edge/speed
function g(I), as well as the gradient of g(I), thereby attracting it to strong edges.

profile under the current optimized curve, and uses this to preferentially keep the wire moving
along the same (or a similar looking) boundary (Figure 5.9b—c).

Several extensions have been proposed to the basic algorithm, which works remarkably
well even in its original form. Mortensen and Barrett (1999) use tobogganing, which is a
simple form of watershed region segmentation, to pre-segment the image into regions whose
boundaries become candidates for optimized curve paths. The resulting region boundaries
are turned into a much smaller graph, where nodes are located wherever three or four regions
meet. The Dijkstra algorithm is then run on this reduced graph, resulting in much faster (and
often more stable) performance. Another extension to intelligent scissors is to use a proba-
bilistic framework that takes into account the current trajectory of the boundary, resulting in
a system called JetStream (Pérez, Blake, and Gangnet 2001).

Instead of re-computing an optimal curve at each time instant, a simpler system can be
developed by simply “snapping” the current mouse position to the nearest likely boundary
point (Gleicher 1995). Applications of these boundary extraction techniques to image cutting
and pasting are presented in Section 10.4.

5.1.4 Level Sets

A limitation of active contours based on parametric curves of the form f(s), e.g., snakes, B-
snakes, and CONDENSATION, is that it is challenging to change the topology of the curve
as it evolves. (Mclnerney and Terzopoulos (1999, 2000) describe one approach to doing
this.) Furthermore, if the shape changes dramatically, curve reparameterization may also be
required.

An alternative representation for such closed contours is to use a level set, where the zero-
crossing(s) of a characteristic (or signed distance (Section 3.3.3)) function define the curve.

282 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Level sets evolve to fit and track objects of interest by modifying the underlying embedding
function (another name for this 2D function) ¢(z,y) instead of the curve f(s) (Malladi,
Sethian, and Vemuri 1995; Sethian 1999; Sapiro 2001; Osher and Paragios 2003). To reduce
the amount of computation required, only a small strip (frontier) around the locations of the
current zero-crossing needs to updated at each step, which results in what are called fast
marching methods (Sethian 1999).

An example of an evolution equation is the geodesic active contour proposed by Caselles,
Kimmel, and Sapiro (1997) and Yezzi, Kichenassamy, Kumar et al. (1997),

& = Ivelav (9055)

Vo

V|

where g([) is a generalized version of the snake edge potential (5.5). To get an intuitive sense

g(I)|Vldiv () + Vg(I) -V, (5.19)

of the curve’s behavior, assume that the embedding function ¢ is a signed distance function
away from the curve (Figure 5.10), in which case |¢| = 1. The first term in Equation (5.19)
moves the curve in the direction of its curvature, i.e., it acts to straighten the curve, under
the influence of the modulation function g(I). The second term moves the curve down the
gradient of g(7I), encouraging the curve to migrate towards minima of g(7I).

While this level-set formulation can readily change topology, it is still susceptible to lo-
cal minima, since it is based on local measurements such as image gradients. An alternative
approach is to re-cast the problem in a segmentation framework, where the energy measures
the consistency of the image statistics (e.g., color, texture, motion) inside and outside the seg-
mented regions (Cremers, Rousson, and Deriche 2007; Rousson and Paragios 2008; Houhou,
Thiran, and Bresson 2008). These approaches build on earlier energy-based segmentation
frameworks introduced by Leclerc (1989), Mumford and Shah (1989), and Chan and Vese
(1992), which are discussed in more detail in Section 5.5. Examples of such level-set seg-
mentations are shown in Figure 5.11, which shows the evolution of the level sets from a series
of distributed circles towards the final binary segmentation.

For more information on level sets and their applications, please see the collection of
papers edited by Osher and Paragios (2003) as well as the series of Workshops on Variational
and Level Set Methods in Computer Vision (Paragios, Faugeras, Chan ef al. 2005) and Special
Issues on Scale Space and Variational Methods in Computer Vision (Paragios and Sgallari
2009).

5.1.5 Application: Contour tracking and rotoscoping

Active contours can be used in a wide variety of object-tracking applications (Blake and Isard
1998; Yilmaz, Javed, and Shah 2006). For example, they can be used to track facial features

5.1 Active contours 283

0000000000
000ROQOO00
00090000
00Q0QB0 000

oQ
oQ

600000000
o o PO o @ oo
oo Qo Qo o
@qg Bagdélo o o
o 00QDO0O0
000QQOQ00
° 0.0a800000
000 0 0 OQOO

Q 0 O

(o]

elete, 000

o 0

(o]

Figure 5.11 Level set segmentation (Cremers, Rousson, and Deriche 2007) © 2007
Springer: (a) grayscale image segmentation and (b) color image segmentation. Uni-variate
and multi-variate Gaussians are used to model the foreground and background pixel dis-
tributions. The initial circles evolve towards an accurate segmentation of foreground and
background, adapting their topology as they evolve.

for performance-driven animation (Terzopoulos and Waters 1990; Lee, Terzopoulos, and Wa-
ters 1995; Parke and Waters 1996; Bregler, Covell, and Slaney 1997) (Figure 5.2b). They can
also be used to track heads and people, as shown in Figure 5.8, as well as moving vehicles
(Paragios and Deriche 2000). Additional applications include medical image segmentation,
where contours can be tracked from slice to slice in computerized tomography (3D medical
imagery) (Cootes and Taylor 2001) or over time, as in ultrasound scans.

An interesting application that is closer to computer animation and visual effects is ro-
toscoping, which uses the tracked contours to deform a set of hand-drawn animations (or
to modify or replace the original video frames).” Agarwala, Hertzmann, Seitz et al. (2004)
present a system based on tracking hand-drawn B-spline contours drawn at selected keyframes
using a combination of geometric and appearance-based criteria (Figure 5.12). They also pro-
vide an excellent review of previous rotoscoping and image-based, contour-tracking systems.

s

7 The term comes from a device (a rotoscope) that projected frames of a live-action film underneath an acetate so
that artists could draw animations directly over the actors’ shapes.

284 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 5.12 Keyframe-based rotoscoping (Agarwala, Hertzmann, Seitz et al. 2004) (©) 2004
ACM: (a) original frames; (b) rotoscoped contours; (c) re-colored blouse; (d) rotoscoped
hand-drawn animation.

Additional applications of rotoscoping (object contour detection and segmentation), such
as cutting and pasting objects from one photograph into another, are presented in Section 10.4.

5.2 Split and merge

As mentioned in the introduction to this chapter, the simplest possible technique for seg-
menting a grayscale image is to select a threshold and then compute connected components
(Section 3.3.2). Unfortunately, a single threshold is rarely sufficient for the whole image
because of lighting and intra-object statistical variations.

In this section, we describe a number of algorithms that proceed either by recursively
splitting the whole image into pieces based on region statistics or, conversely, merging pixels
and regions together in a hierarchical fashion. It is also possible to combine both splitting and
merging by starting with a medium-grain segmentation (in a quadtree representation) and
then allowing both merging and splitting operations (Horowitz and Pavlidis 1976; Pavlidis
and Liow 1990).

5.2.1 Watershed

A technique related to thresholding, since it operates on a grayscale image, is watershed com-
putation (Vincent and Soille 1991). This technique segments an image into several catchment
basins, which are the regions of an image (interpreted as a height field or landscape) where

5.2 Split and merge 285

() (b) (©

Figure 5.13 Locally constrained watershed segmentation (Beare 2006) (© 2006 IEEE: (a)
original confocal microscopy image with marked seeds (line segments); (b) standard water-
shed segmentation; (c) locally constrained watershed segmentation.

rain would flow into the same lake. An efficient way to compute such regions is to start flood-
ing the landscape at all of the local minima and to label ridges wherever differently evolving
components meet. The whole algorithm can be implemented using a priority queue of pixels
and breadth-first search (Vincent and Soille 1991).%

Since images rarely have dark regions separated by lighter ridges, watershed segmen-
tation is usually applied to a smoothed version of the gradient magnitude image, which also
makes it usable with color images. As an alternative, the maximum oriented energy in a steer-
able filter (3.28-3.29) (Freeman and Adelson 1991) can be used as the basis of the oriented
watershed transform developed by Arbeldez, Maire, Fowlkes et al. (2010). Such techniques
end up finding smooth regions separated by visible (higher gradient) boundaries. Since such
boundaries are what active contours usually follow, active contour algorithms (Mortensen and
Barrett 1999; Li, Sun, Tang et al. 2004) often precompute such a segmentation using either
the watershed or the related robogganing technique (Section 5.1.3).

Unfortunately, watershed segmentation associates a unique region with each local mini-
mum, which can lead to over-segmentation. Watershed segmentation is therefore often used
as part of an interactive system, where the user first marks seed locations (with a click or
a short stroke) that correspond to the centers of different desired components. Figure 5.13
shows the results of running the watershed algorithm with some manually placed markers on
a confocal microscopy image. It also shows the result for an improved version of watershed
that uses local morphology to smooth out and optimize the boundaries separating the regions
(Beare 2006).

8 A related algorithm can be used to compute maximally stable extremal regions (MSERs) efficiently (Sec-
tion 4.1.1) (Nistér and Stewénius 2008).

286 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

5.2.2 Region splitting (divisive clustering)

Splitting the image into successively finer regions is one of the oldest techniques in computer
vision. Ohlander, Price, and Reddy (1978) present such a technique, which first computes a
histogram for the whole image and then finds a threshold that best separates the large peaks
in the histogram. This process is repeated until regions are either fairly uniform or below a
certain size.

More recent splitting algorithms often optimize some metric of intra-region similarity and
inter-region dissimilarity. These are covered in Sections 5.4 and 5.5.

5.2.3 Region merging (agglomerative clustering)

Region merging techniques also date back to the beginnings of computer vision. Brice and
Fennema (1970) use a dual grid for representing boundaries between pixels and merge re-
gions based on their relative boundary lengths and the strength of the visible edges at these
boundaries.

In data clustering, algorithms can link clusters together based on the distance between
their closest points (single-link clustering), their farthest points (complete-link clustering), or
something in between (Jain, Topchy, Law et al. 2004). Kamvar, Klein, and Manning (2002)
provide a probabilistic interpretation of these algorithms and show how additional models
can be incorporated within this framework.

A very simple version of pixel-based merging combines adjacent regions whose average
color difference is below a threshold or whose regions are too small. Segmenting the image
into such superpixels (Mori, Ren, Efros et al. 2004), which are not semantically meaningful,
can be a useful pre-processing stage to make higher-level algorithms such as stereo matching
(Zitnick, Kang, Uyttendaele er al. 2004; Taguchi, Wilburn, and Zitnick 2008), optic flow
(Zitnick, Jojic, and Kang 2005; Brox, Bregler, and Malik 2009), and recognition (Mori, Ren,
Efros et al. 2004; Mori 2005; Gu, Lim, Arbelaez et al. 2009; Lim, Arbelaez, Gu et al. 2009)
both faster and more robust.

5.2.4 Graph-based segmentation

While many merging algorithms simply apply a fixed rule that groups pixels and regions
together, Felzenszwalb and Huttenlocher (2004b) present a merging algorithm that uses rel-
ative dissimilarities between regions to determine which ones should be merged; it produces
an algorithm that provably optimizes a global grouping metric. They start with a pixel-to-
pixel dissimilarity measure w(e) that measures, for example, intensity differences between
N3 neighbors. (Alternatively, they can use the joint feature space distances (5.42) introduced
by Comaniciu and Meer (2002), which we discuss in Section 5.3.2.)

5.2 Split and merge 287

(a) (b)

Figure 5.14 Graph-based merging segmentation (Felzenszwalb and Huttenlocher 2004b)
(© 2004 Springer: (a) input grayscale image that is successfully segmented into three regions
even though the variation inside the smaller rectangle is larger than the variation across the
middle edge; (b) input grayscale image; (c) resulting segmentation using an Ng pixel neigh-
borhood.

For any region R, its internal difference is defined as the largest edge weight in the re-
gion’s minimum spanning tree,

Int(R) = min w(e). (5.20)
eeMST(R)
For any two adjacent regions with at least one edge connecting their vertices, the difference
between these regions is defined as the minimum weight edge connecting the two regions,

Dif (R, R2) = min w(e). 5.21
f(1 2) e=(v1,v2)|v1 ER1,v2ER> () ()
Their algorithm merges any two adjacent regions whose difference is smaller than the mini-
mum internal difference of these two regions,

MInt(Ry, Re) = min(Int(Ry) + 7(R1), Int(R2) + 7(R2)), (5.22)

where 7(R) is a heuristic region penalty that Felzenszwalb and Huttenlocher (2004b) set to
k/|R)|, but which can be set to any application-specific measure of region goodness.

By merging regions in decreasing order of the edges separating them (which can be effi-
ciently evaluated using a variant of Kruskal’s minimum spanning tree algorithm), they prov-
ably produce segmentations that are neither too fine (there exist regions that could have been
merged) nor too coarse (there are regions that could be split without being mergeable). For
fixed-size pixel neighborhoods, the running time for this algorithm is O(N log N), where N
is the number of image pixels, which makes it one of the fastest segmentation algorithms
(Paris and Durand 2007). Figure 5.14 shows two examples of images segmented using their
technique.

288 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

A
ot
@ (b) © (@)

Figure 5.15 Coarse to fine node aggregation in segmentation by weighted aggregation
(SWA) (Sharon, Galun, Sharon et al. 2006) (©) 2006 Macmillan Publishers Ltd [Nature]: (a)
original gray-level pixel grid; (b) inter-pixel couplings, where thicker lines indicate stronger

couplings; (c) after one level of coarsening, where each original pixel is strongly coupled to
one of the coarse-level nodes; (d) after two levels of coarsening.

5.2.5 Probabilistic aggregation

Alpert, Galun, Basri et al. (2007) develop a probabilistic merging algorithm based on two
cues, namely gray-level similarity and texture similarity. The gray-level similarity between
regions I?; and RR; is based on the minimal external difference from other neighboring regions,

U?(;cal = mln(A;’_v A;_)v (523)

where A;r = ming |A;| and A, is the difference in average intensities between regions R;
and Ry. This is compared to the average intensity difference,

A A

Olocal = 9)

(5.24)

where A7 = >, (T Aik)/ >, (i) and 7y, is the boundary length between regions R; and
Rj.. The texture similarity is defined using relative differences between histogram bins of
simple oriented Sobel filter responses. The pairwise statistics o}, and o, are used to
compute the likelihoods p;; that two regions should be merged. (See the paper by Alpert,
Galun, Basri et al. (2007) for more details.)

Merging proceeds in a hierarchical fashion inspired by algebraic multigrid techniques
(Brandt 1986; Briggs, Henson, and McCormick 2000) and previously used by Alpert, Galun,
Basri et al. (2007) in their segmentation by weighted aggregation (SWA) algorithm (Sharon,
Galun, Sharon et al. 2006), which we discuss in Section 5.4. A subset of the nodes C C V
that are (collectively) strongly coupled to all of the original nodes (regions) are used to define
the problem at a coarser scale (Figure 5.15), where strong coupling is defined as

Zjec Pij

> ¢, (5.25)
> jev Pij

5.3 Mean shift and mode finding 289

with ¢ usually set to 0.2. The intensity and texture similarity statistics for the coarser nodes
are recursively computed using weighted averaging, where the relative strengths (couplings)
between coarse- and fine-level nodes are based on their merge probabilities p;;. This allows
the algorithm to run in essentially O(N) time, using the same kind of hierarchical aggrega-
tion operations that are used in pyramid-based filtering or preconditioning algorithms. After
a segmentation has been identified at a coarser level, the exact memberships of each pixel are
computed by propagating coarse-level assignments to their finer-level “children” (Sharon,
Galun, Sharon et al. 2006; Alpert, Galun, Basri et al. 2007). Figure 5.22 shows the segmen-
tations produced by this algorithm compared to other popular segmentation algorithms.

5.3 Mean shift and mode finding

Mean-shift and mode finding techniques, such as k-means and mixtures of Gaussians, model
the feature vectors associated with each pixel (e.g., color and position) as samples from an
unknown probability density function and then try to find clusters (modes) in this distribution.

Consider the color image shown in Figure 5.16a. How would you segment this image
based on color alone? Figure 5.16b shows the distribution of pixels in L*u*v* space, which
is equivalent to what a vision algorithm that ignores spatial location would see. To make the
visualization simpler, let us only consider the L*u* coordinates, as shown in Figure 5.16c.
How many obvious (elongated) clusters do you see? How would you go about finding these
clusters?

The k-means and mixtures of Gaussians techniques use a parametric model of the den-
sity function to answer this question, i.e., they assume the density is the superposition of a
small number of simpler distributions (e.g., Gaussians) whose locations (centers) and shape
(covariance) can be estimated. Mean shift, on the other hand, smoothes the distribution and
finds its peaks as well as the regions of feature space that correspond to each peak. Since
a complete density is being modeled, this approach is called non-parametric (Bishop 2006).
Let us look at these techniques in more detail.

5.3.1 K-means and mixtures of Gaussians

While k-means implicitly models the probability density as a superposition of spherically
symmetric distributions, it does not require any probabilistic reasoning or modeling (Bishop
2006). Instead, the algorithm is given the number of clusters k it is supposed to find; it
then iteratively updates the cluster center location based on the samples that are closest to
each center. The algorithm can be initialized by randomly sampling k centers from the input
feature vectors. Techniques have also been developed for splitting or merging cluster centers

290 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

MNOAMALIZED DENSITY
o o o
o = @

87

(e)

Figure 5.16 Mean-shift image segmentation (Comaniciu and Meer 2002) (©) 2002 IEEE:
(a) input color image; (b) pixels plotted in L*u*v* space; (c) L*u* space distribution; (d)
clustered results after 159 mean-shift procedures; (e) corresponding trajectories with peaks
marked as red dots.

5.3 Mean shift and mode finding 291

based on their statistics, and for accelerating the process of finding the nearest mean center
(Bishop 2006).

In mixtures of Gaussians, each cluster center is augmented by a covariance matrix whose
values are re-estimated from the corresponding samples. Instead of using nearest neighbors
to associate input samples with cluster centers, a Mahalanobis distance (Appendix B.1.1) is
used:

d(@i, py; Eie) = llzi — ppllg = (i -) 2 (@ —) (5.26)

where z; are the input samples, p, are the cluster centers, and X, are their covariance es-
timates. Samples can be associated with the nearest cluster center (a hard assignment of
membership) or can be softly assigned to several nearby clusters.

This latter, more commonly used, approach corresponds to iteratively re-estimating the
parameters for a mixture of Gaussians density function,

P, i, Zu}) = Y 7 N (@] g, Zh), (5.27)
k
where 7y, are the mixing coefficients, p,, and X, are the Gaussian means and covariances,
and
1 —d(X, b, 20%)
N(z|py, Xx) = Ee Py (5.28)
E

is the normal (Gaussian) distribution (Bishop 2006).

To iteratively compute (a local) maximum likely estimate for the unknown mixture pa-
rameters {7y, by, Xk }» the expectation maximization (EM) algorithm (Dempster, Laird, and
Rubin 1977) proceeds in two alternating stages:

1. The expectation stage (E step) estimates the responsibilities

1 .
Zik = Z?Tk N(x|py, Xx) with Ek:zik =1, (5.29)

which are the estimates of how likely a sample x; was generated from the kth Gaussian
cluster.

2. The maximization stage (M step) updates the parameter values

1
we = N—kszw (5.30)
1
T = mZzik(azi—um(azi—umT, (5.31)
T, = % (5.32)

N)

292 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

where

Ny = sz (5.33)

is an estimate of the number of sample points assigned to each cluster.

Bishop (2006) has a wonderful exposition of both mixture of Gaussians estimation and the
more general topic of expectation maximization.

In the context of image segmentation, Ma, Derksen, Hong et al. (2007) present a nice
review of segmentation using mixtures of Gaussians and develop their own extension based
on Minimum Description Length (MDL) coding, which they show produces good results on
the Berkeley segmentation database.

5.3.2 Mean shift

While k-means and mixtures of Gaussians use a parametric form to model the probability den-
sity function being segmented, mean shift implicitly models this distribution using a smooth
continuous non-parametric model. The key to mean shift is a technique for efficiently find-
ing peaks in this high-dimensional data distribution without ever computing the complete
function explicitly (Fukunaga and Hostetler 1975; Cheng 1995; Comaniciu and Meer 2002).

Consider once again the data points shown in Figure 5.16¢, which can be thought of as
having been drawn from some probability density function. If we could compute this density
function, as visualized in Figure 5.16e, we could find its major peaks (modes) and identify
regions of the input space that climb to the same peak as being part of the same region. This
is the inverse of the watershed algorithm described in Section 5.2.1, which climbs downbhill
to find basins of attraction.

The first question, then, is how to estimate the density function given a sparse set of
samples. One of the simplest approaches is to just smooth the data, e.g., by convolving it
with a fixed kernel of width A,

flx) = ZK(w —x;) = Zk (”m_hf”> , (5.34)

where x; are the input samples and k(r) is the kernel function (or Parzen window).” This
approach is known as kernel density estimation or the Parzen window technique (Duda, Hart,
and Stork 2001, Section 4.3; Bishop 2006, Section 2.5.1). Once we have computed f(x), as
shown in Figures 5.16e and 5.17, we can find its local maxima using gradient ascent or some
other optimization technique.

9 In this simplified formula, a Euclidean metric is used. We discuss a little later (5.42) how to generalize this
to non-uniform (scaled or oriented) metrics. Note also that this distribution may not be proper, i.e., integrate to 1.
Since we are looking for maxima in the density, this does not matter.

5.3 Mean shift and mode finding 293

\

X G(X) Xk X

Figure 5.17 One-dimensional visualization of the kernel density estimate, its derivative, and
a mean shift. The kernel density estimate f(x) is obtained by convolving the sparse set of
input samples x; with the kernel function K (x). The derivative of this function, f’(x), can
be obtained by convolving the inputs with the derivative kernel G(z). Estimating the local
displacement vectors around a current estimate xj, results in the mean-shift vector m(zy),
which, in a multi-dimensional setting, point in the same direction as the function gradient
V f(x}). The red dots indicate local maxima in f(z) to which the mean shifts converge.

The problem with this “brute force” approach is that, for higher dimensions, it becomes
computationally prohibitive to evaluate f(z) over the complete search space.'” Instead, mean
shift uses a variant of what is known in the optimization literature as multiple restart gradient
descent. Starting at some guess for a local maximum, y;, which can be a random input data
point &;, mean shift computes the gradient of the density estimate f(x) at y,, and takes an
uphill step in that direction (Figure 5.17). The gradient of f () is given by

Vi@) =) (@ —2)Gx-2)=) (xi-z)g (”"’hf”> : (5.35)

where
g(r) = —k'(r), (5.36)

and k' (r) is the first derivative of k(7). We can re-write the gradient of the density function
as

Vix) =

> Gz - :ci)] m(x), (5.37)

where the vector S G)

is called the mean shift, since it is the difference between the weighted mean of the neighbors
x; around x and the current value of .

10 Even for one dimension, if the space is extremely sparse, it may be inefficient.

294 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

In the mean-shift procedure, the current estimate of the mode y,, at iteration k is replaced
by its locally weighted mean,

cx;G —x;
Vi1 = Ui + M) = %?G(;Z’“_) 5 (5.39)

Comaniciu and Meer (2002) prove that this algorithm converges to a local maximum of f(x)
under reasonably weak conditions on the kernel k(r), i.e., that it is monotonically decreasing.
This convergence is not guaranteed for regular gradient descent unless appropriate step size
control is used.

The two kernels that Comaniciu and Meer (2002) studied are the Epanechnikov kernel,

kg(r) = max(0,1 —r), (5.40)
which is a radial generalization of a bilinear kernel, and the Gaussian (normal) kernel,
1
kn(r) = exp (—Qr) . (5.41)

The corresponding derivative kernels g(r) are a unit ball and another Gaussian, respectively.
Using the Epanechnikov kernel converges in a finite number of steps, while the Gaussian
kernel has a smoother trajectory (and produces better results), but converges very slowly near
a mode (Exercise 5.5).

The simplest way to apply mean shift is to start a separate mean-shift mode estimate
y at every input point x; and to iterate for a fixed number of steps or until the mean-shift
magnitude is below a threshold. A faster approach is to randomly subsample the input points
x; and to keep track of each point’s temporal evolution. The remaining points can then be
classified based on the nearest evolution path (Comaniciu and Meer 2002). Paris and Durand
(2007) review a number of other more efficient implementations of mean shift, including their
own approach, which is based on using an efficient low-resolution estimate of the complete
multi-dimensional space of f(x) along with its stationary points.

The color-based segmentation shown in Figure 5.16 only looks at pixel colors when deter-
mining the best clustering. It may therefore cluster together small isolated pixels that happen
to have the same color, which may not correspond to a semantically meaningful segmentation
of the image.

Better results can usually be obtained by clustering in the joint domain of color and lo-
cation. In this approach, the spatial coordinates of the image x; = (z,y), which are called
the spatial domain, are concatenated with the color values x,., which are known as the range
domain, and mean-shift clustering is applied in this five-dimensional space x ;. Since location
and color may have different scales, the kernels are adjusted accordingly, i.e., we use a kernel

2 2

of the form

5.3 Mean shift and mode finding 295

Figure 5.18 Mean-shift color image segmentation with parameters (hg,h,, M) =
(16,19, 40) (Comaniciu and Meer 2002) (©) 2002 IEEE.

where separate parameters h and h, are used to control the spatial and range bandwidths of
the filter kernels. Figure 5.18 shows an example of mean-shift clustering in the joint domain,
with parameters (hs, b, M) = (16, 19,40), where spatial regions containing less than M
pixels are eliminated.

The form of the joint domain filter kernel (5.42) is reminiscent of the bilateral filter kernel
(3.34-3.37) discussed in Section 3.3.1. The difference between mean shift and bilateral fil-
tering, however, is that in mean shift the spatial coordinates of each pixel are adjusted along
with its color values, so that the pixel migrates more quickly towards other pixels with similar
colors, and can therefore later be used for clustering and segmentation.

Determining the best bandwidth parameters h to use with mean shift remains something
of an art, although a number of approaches have been explored. These include optimizing
the bias—variance tradeoff, looking for parameter ranges where the number of clusters varies
slowly, optimizing some external clustering criterion, or using top-down (application domain)
knowledge (Comaniciu and Meer 2003). It is also possible to change the orientation of the
kernel in joint parameter space for applications such as spatio-temporal (video) segmentations
(Wang, Thiesson, Xu et al. 2004).

Mean shift has been applied to a number of different problems in computer vision, includ-
ing face tracking, 2D shape extraction, and texture segmentation (Comaniciu and Meer 2002),
and more recently in stereo matching (Chapter 11) (Wei and Quan 2004), non-photorealistic
rendering (Section 10.5.2) (DeCarlo and Santella 2002), and video editing (Section 10.4.5)
(Wang, Bhat, Colburn et al. 2005). Paris and Durand (2007) provide a nice review of such
applications, as well as techniques for more efficiently solving the mean-shift equations and
producing hierarchical segmentations.

296 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

A B sum

A | assoc(A,A) | cut(A,B) | assoc(A,V)

JA
B | cut(B,A) |assoc(B,B) | assoc(B,V)
sum | assoc(A,V) | assoc(B,v)

(a) b)

Figure 5.19 Sample weighted graph and its normalized cut: (a) a small sample graph and
its smallest normalized cut; (b) tabular form of the associations and cuts for this graph. The
assoc and cut entries are computed as area sums of the associated weight matrix W (Fig-
ure 5.20). Normalizing the table entries by the row or column sums produces normalized
associations and cuts Nassoc and N cut.

5.4 Normalized cuts

While bottom-up merging techniques aggregate regions into coherent wholes and mean-shift
techniques try to find clusters of similar pixels using mode finding, the normalized cuts
technique introduced by Shi and Malik (2000) examines the affinities (similarities) between
nearby pixels and tries to separate groups that are connected by weak affinities.

Consider the simple graph shown in Figure 5.19a. The pixels in group A are all strongly
connected with high affinities, shown as thick red lines, as are the pixels in group B. The
connections between these two groups, shown as thinner blue lines, are much weaker. A
normalized cut between the two groups, shown as a dashed line, separates them into two
clusters.

The cut between two groups A and B is defined as the sum of all the weights being cut,

cut(A, B) = Z wij, (5.43)

i€A,jEB

where the weights between two pixels (or regions) ¢ and j measure their similarity. Using
a minimum cut as a segmentation criterion, however, does not result in reasonable clusters,
since the smallest cuts usually involve isolating a single pixel.

A better measure of segmentation is the normalized cut, which is defined as

cut(A, B) cut(A, B)

Ncut(A, B) =
cut(4, B) assoc(A,V) assoc(B,V)’

(5.44)

where assoc(A, A) = >, 4 jca wij is the association (sum of all the weights) within a
cluster and assoc(A, V) = assoc(A, A) + cut(A, B) is the sum of all the weights associated

5.4 Normalized cuts 297

with nodes in A. Figure 5.19b shows how the cuts and associations can be thought of as area
sums in the weight matrix W = [w;;], where the entries of the matrix have been arranged so
that the nodes in A come first and the nodes in B come second. Figure 5.20 shows an actual
weight matrix for which these area sums can be computed. Dividing each of these areas by
the corresponding row sum (the rightmost column of Figure 5.19b) results in the normalized
cut and association values. These normalized values better reflect the fitness of a particular
segmentation, since they look for collections of edges that are weak relative to all of the edges
both inside and emanating from a particular region.

Unfortunately, computing the optimal normalized cut is NP-complete. Instead, Shi and
Malik (2000) suggest computing a real-valued assignment of nodes to groups. Let x be the
indicator vector where x; = +1iffi € Aand x; = —1iffi € B. Let d = W1 be the row
sums of the symmetric matrix W and D = diag(d) be the corresponding diagonal matrix.
Shi and Malik (2000) show that minimizing the normalized cut over all possible indicator
vectors & is equivalent to minimizing

T
.y (D-W)y
min =¥————= 5.45
Yy y"Dy G4
where y = ((1+a) —b(1 —x))/2 is a vector consisting of all 1s and —bs such thaty-d = 0.

Minimizing this Rayleigh quotient is equivalent to solving the generalized eigenvalue system
(D - W)y = \Duy, (5.46)

which can be turned into a regular eigenvalue problem
(I —N)z =)\z, (5.47)

where N = D Y2WD™'/? is the normalized affinity matrix (Weiss 1999) and z =
DY/ 24. Because these eigenvectors can be interpreted as the large modes of vibration in
a spring-mass system, normalized cuts is an example of a spectral method for image segmen-
tation.

Extending an idea originally proposed by Scott and Longuet-Higgins (1990), Weiss (1999)
suggests normalizing the affinity matrix and then using the top k eigenvectors to reconstitute a
@ matrix. Other papers have extended the basic normalized cuts framework by modifying the
affinity matrix in different ways, finding better discrete solutions to the minimization prob-
lem, or applying multi-scale techniques (Meild and Shi 2000, 2001; Ng, Jordan, and Weiss
2001; Yu and Shi 2003; Cour, Bénézit, and Shi 2005; Tolliver and Miller 2006).

Figure 5.20b shows the second smallest (real-valued) eigenvector corresponding to the
weight matrix shown in Figure 5.20a. (Here, the rows have been permuted to separate the
two groups of variables that belong to the different components of this eigenvector.) Af-
ter this real-valued vector is computed, the variables corresponding to positive and negative

298 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

0.04-5.‘“
Ab
0.02} Ay,
M
0,
-0.02!
Ay
-0.04f N
W
10 20 30 0% 10 20 30 40

(a) (b)

Figure 5.20 Sample weight table and its second smallest eigenvector (Shi and Malik 2000)
(© 2000 IEEE: (a) sample 32 x 32 weight matrix W; (b) eigenvector corresponding to the
second smallest eigenvalue of the generalized eigenvalue problem (D — W)y = ADwy.

eigenvector values are associated with the two cut components. This process can be further
repeated to hierarchically subdivide an image, as shown in Figure 5.21.
The original algorithm proposed by Shi and Malik (2000) used spatial position and image
feature differences to compute the pixel-wise affinities,
|1Fi — Fi|* |z — mj|2)

Wi = €Xp | — —
! (of o}

(5.48)

for pixels within a radius ||z; — ;|| < r, where F is a feature vector that consists of intensi-
ties, colors, or oriented filter histograms. (Note how (5.48) is the negative exponential of the
joint feature space distance (5.42).)

In subsequent work, Malik, Belongie, Leung et al. (2001) look for intervening contours
between pixels ¢ and j and define an intervening contour weight

wl¢ =1 — max Deon (), (5.49)

g xel;;
where [;; is the image line joining pixels ¢ and j and pco,, () is the probability of an inter-
vening contour perpendicular to this line, which is defined as the negative exponential of the
oriented energy in the perpendicular direction. They multiply these weights with a texton-
based texture similarity metric and use an initial over-segmentation based purely on local
pixel-wise features to re-estimate intervening contours and texture statistics in a region-based
manner. Figure 5.22 shows the results of running this improved algorithm on a number of
test images.

Because it requires the solution of large sparse eigenvalue problems, normalized cuts can
be quite slow. Sharon, Galun, Sharon et al. (2006) present a way to accelerate the com-
putation of the normalized cuts using an approach inspired by algebraic multigrid (Brandt

5.4 Normalized cuts 299

i

Figure 5.21 Normalized cuts segmentation (Shi and Malik 2000) (© 2000 IEEE: The input
image and the components returned by the normalized cuts algorithm.

Mean-shift

\

Figure 5.22 Comparative segmentation results (Alpert, Galun, Basri et al. 2007) © 2007

Original image Our method SWA V1 Normalized cuts

IEEE. “Our method” refers to the probabilistic bottom-up merging algorithm developed by
Alpert et al.

300 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1986; Briggs, Henson, and McCormick 2000). To coarsen the original problem, they select
a smaller number of variables such that the remaining fine-level variables are strongly cou-
pled to at least one coarse-level variable. Figure 5.15 shows this process schematically, while
(5.25) gives the definition for strong coupling except that, in this case, the original weights
w;; in the normalized cut are used instead of merge probabilities p;;.

Once a set of coarse variables has been selected, an inter-level interpolation matrix with
elements similar to the left hand side of (5.25) is used to define a reduced version of the nor-
malized cuts problem. In addition to computing the weight matrix using interpolation-based
coarsening, additional region statistics are used to modulate the weights. After a normalized
cut has been computed at the coarsest level of analysis, the membership values of finer-level
nodes are computed by interpolating parent values and mapping values within € = 0.1 of 0
and 1 to pure Boolean values.

An example of the segmentation produced by weighted aggregation (SWA) is shown in
Figure 5.22, along with the most recent probabilistic bottom-up merging algorithm by Alpert,
Galun, Basri et al. (2007), which was described in Section 5.2. In even more recent work,
Wang and Oliensis (2010) show how to estimate statistics over segmentations (e.g., mean
region size) directly from the affinity graph. They use this to produce segmentations that are
more central with respect to other possible segmentations.

5.5 Graph cuts and energy-based methods

A common theme in image segmentation algorithms is the desire to group pixels that have
similar appearance (statistics) and to have the boundaries between pixels in different regions
be of short length and across visible discontinuities. If we restrict the boundary measurements
to be between immediate neighbors and compute region membership statistics by summing
over pixels, we can formulate this as a classic pixel-based energy function using either a
variational formulation (regularization, see Section 3.7.1) or as a binary Markov random
field (Section 3.7.2).

Examples of the continuous approach include (Mumford and Shah 1989; Chan and Vese
1992; Zhu and Yuille 1996; Tabb and Ahuja 1997) along with the level set approaches dis-
cussed in Section 5.1.4. An early example of a discrete labeling problem that combines
both region-based and boundary-based energy terms is the work of Leclerc (1989), who used
minimum description length (MDL) coding to derive the energy function being minimized.
Boykov and Funka-Lea (2006) present a wonderful survey of various energy-based tech-
niques for binary object segmentation, some of which we discuss below.

As we saw in Section 3.7.2, the energy corresponding to a segmentation problem can be

5.5 Graph cuts and energy-based methods 301

written (c.f. Equations (3.100) and (3.108-3.113)) as

E(f) =Y Ex(i,5) + Eu(i,), (5.50)
(2]
where the region term

is the negative log likelihood that pixel intensity (or color) I (i, j) is consistent with the statis-
tics of region R(f(7, 7)) and the boundary term

Ey(i,) = 52(6,3)0(f(i,5) = f(i + 1,7)) + 8y (6, 7)0(f(i,5) — f(,5+ 1)) (5.52)

measures the inconsistency between Ny neighbors modulated by local horizontal and vertical
smoothness terms s, (7, j) and s, (4, §).
Region statistics can be something as simple as the mean gray level or color (Leclerc
1989), in which case
Es(I;) = I = 1. (5.53)

Alternatively, they can be more complex, such as region intensity histograms (Boykov and
Jolly 2001) or color Gaussian mixture models (Rother, Kolmogorov, and Blake 2004). For
smoothness (boundary) terms, it is common to make the strength of the smoothness s, (4, j)
inversely proportional to the local edge strength (Boykov, Veksler, and Zabih 2001).

Originally, energy-based segmentation problems were optimized using iterative gradient
descent techniques, which were slow and prone to getting trapped in local minima. Boykov
and Jolly (2001) were the first to apply the binary MRF optimization algorithm developed by
Greig, Porteous, and Seheult (1989) to binary object segmentation.

In this approach, the user first delineates pixels in the background and foreground regions
using a few strokes of an image brush (Figure 3.61). These pixels then become the seeds that
tie nodes in the S—T graph to the source and sink labels S and 1" (Figure 5.23a). Seed pixels
can also be used to estimate foreground and background region statistics (intensity or color
histograms).

The capacities of the other edges in the graph are derived from the region and boundary
energy terms, i.e., pixels that are more compatible with the foreground or background region
get stronger connections to the respective source or sink; adjacent pixels with greater smooth-
ness also get stronger links. Once the minimum-cut/maximum-flow problem has been solved
using a polynomial time algorithm (Goldberg and Tarjan 1988; Boykov and Kolmogorov
2004), pixels on either side of the computed cut are labeled according to the source or sink to
which they remain connected (Figure 5.23b). While graph cuts is just one of several known
techniques for MRF energy minimization (Appendix B.5.4), it is still the one most commonly
used for solving binary MRF problems.

302

Background
terminal

Objec
terminal

(a)

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Background
terminal

Objec
terminal

(b)

Figure 5.23 Graph cuts for region segmentation (Boykov and Jolly 2001) © 2001 IEEE: (a)
the energy function is encoded as a maximum flow problem; (b) the minimum cut determines

the region boundary.

(b)

Figure 5.24 GrabCut image segmentation (Rother, Kolmogorov, and Blake 2004) © 2004
ACM: (a) the user draws a bounding box in red; (b) the algorithm guesses color distributions
for the object and background and performs a binary segmentation; (c) the process is repeated
with better region statistics.

The basic binary segmentation algorithm of Boykov and Jolly (2001) has been extended
in a number of directions. The GrabCut system of Rother, Kolmogorov, and Blake (2004)
iteratively re-estimates the region statistics, which are modeled as a mixtures of Gaussians in
color space. This allows their system to operate given minimal user input, such as a single
bounding box (Figure 5.24a)—the background color model is initialized from a strip of pixels
around the box outline. (The foreground color model is initialized from the interior pixels,
but quickly converges to a better estimate of the object.) The user can also place additional
strokes to refine the segmentation as the solution progresses. In more recent work, Cui, Yang,
Wen et al. (2008) use color and edge models derived from previous segmentations of similar
objects to improve the local models used in GrabCut.

Another major extension to the original binary segmentation formulation is the addition of

5.5 Graph cuts and energy-based methods 303

source

(a) directed graph (b) image (c) undir. result (d) dir. result

Figure 5.25 Segmentation with a directed graph cut (Boykov and Funka-Lea 2006) (©) 2006
Springer: (a) directed graph; (b) image with seed points; (c) the undirected graph incorrectly
continues the boundary along the bright object; (d) the directed graph correctly segments the
light gray region from its darker surround.

directed edges, which allows boundary regions to be oriented, e.g., to prefer light to dark tran-
sitions or vice versa (Kolmogorov and Boykov 2005). Figure 5.25 shows an example where
the directed graph cut correctly segments the light gray liver from its dark gray surround. The
same approach can be used to measure the flux exiting a region, i.e., the signed gradient pro-
jected normal to the region boundary. Combining oriented graphs with larger neighborhoods
enables approximating continuous problems such as those traditionally solved using level sets
in the globally optimal graph cut framework (Boykov and Kolmogorov 2003; Kolmogorov
and Boykov 2005).

Even more recent developments in graph cut-based segmentation techniques include the
addition of connectivity priors to force the foreground to be in a single piece (Vicente, Kol-
mogorov, and Rother 2008) and shape priors to use knowledge about an object’s shape during
the segmentation process (Lempitsky and Boykov 2007; Lempitsky, Blake, and Rother 2008).

While optimizing the binary MRF energy (5.50) requires the use of combinatorial op-
timization techniques, such as maximum flow, an approximate solution can be obtained by
converting the binary energy terms into quadratic energy terms defined over a continuous
[0, 1] random field, which then becomes a classical membrane-based regularization problem
(3.100-3.102). The resulting quadratic energy function can then be solved using standard
linear system solvers (3.102-3.103), although if speed is an issue, you should use multigrid
or one of its variants (Appendix A.5). Once the continuous solution has been computed, it
can be thresholded at 0.5 to yield a binary segmentation.

The [0, 1] continuous optimization problem can also be interpreted as computing the prob-

304 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

ability at each pixel that a random walker starting at that pixel ends up at one of the labeled
seed pixels, which is also equivalent to computing the potential in a resistive grid where the
resistors are equal to the edge weights (Grady 2006; Sinop and Grady 2007). K-way seg-
mentations can also be computed by iterating through the seed labels, using a binary problem
with one label set to 1 and all the others set to 0 to compute the relative membership proba-
bilities for each pixel. In follow-on work, Grady and Ali (2008) use a precomputation of the
eigenvectors of the linear system to make the solution with a novel set of seeds faster, which
is related to the Laplacian matting problem presented in Section 10.4.3 (Levin, Acha, and
Lischinski 2008). Couprie, Grady, Najman et al. (2009) relate the random walker to water-
sheds and other segmentation techniques. Singaraju, Grady, and Vidal (2008) add directed-
edge constraints in order to support flux, which makes the energy piecewise quadratic and
hence not solvable as a single linear system. The random walker algorithm can also be used
to solve the Mumford—Shah segmentation problem (Grady and Alvino 2008) and to com-
pute fast multigrid solutions (Grady 2008). A nice review of these techniques is given by
Singaraju, Grady, Sinop et al. (2010).

An even faster way to compute a continuous [0, 1] approximate segmentation is to com-
pute weighted geodesic distances between the 0 and 1 seed regions (Bai and Sapiro 2009),
which can also be used to estimate soft alpha mattes (Section 10.4.3). A related approach by
Criminisi, Sharp, and Blake (2008) can be used to find fast approximate solutions to general
binary Markov random field optimization problems.

5.5.1 Application: Medical image segmentation

One of the most promising applications of image segmentation is in the medical imaging
domain, where it can be used to segment anatomical tissues for later quantitative analysis.
Figure 5.25 shows a binary graph cut with directed edges being used to segment the liver tis-
sue (light gray) from its surrounding bone (white) and muscle (dark gray) tissue. Figure 5.26
shows the segmentation of bones in a 256 x 256 x 119 computed X-ray tomography (CT)
volume. Without the powerful optimization techniques available in today’s image segmen-
tation algorithms, such processing used to require much more laborious manual tracing of
individual X-ray slices.

The fields of medical image segmentation (McInerney and Terzopoulos 1996) and med-
ical image registration (Kybic and Unser 2003) (Section 8.3.1) are rich research fields with
their own specialized conferences, such as Medical Imaging Computing and Computer As-
sisted Intervention (MICCAI),'" and journals, such as Medical Image Analysis and IEEE
Transactions on Medical Imaging. These can be great sources of references and ideas for
research in this area.

htp://www.miccai.org/.

http://www.miccai.org/

5.6 Additional reading 305

(b)

Figure 5.26 3D volumetric medical image segmentation using graph cuts (Boykov and
Funka-Lea 2006) (©) 2006 Springer: (a) computed tomography (CT) slice with some seeds;
(b) recovered 3D volumetric bone model (on a 256 x 256 x 119 voxel grid).

5.6 Additional reading

The topic of image segmentation is closely related to clustering techniques, which are treated
in a number of monographs and review articles (Jain and Dubes 1988; Kaufman and Rousseeuw
1990; Jain, Duin, and Mao 2000; Jain, Topchy, Law et al. 2004). Some early segmentation
techniques include those describerd by Brice and Fennema (1970); Pavlidis (1977); Riseman
and Arbib (1977); Ohlander, Price, and Reddy (1978); Rosenfeld and Davis (1979); Haralick
and Shapiro (1985), while examples of newer techniques are developed by Leclerc (1989);
Mumford and Shah (1989); Shi and Malik (2000); Felzenszwalb and Huttenlocher (2004b).

Arbeldez, Maire, Fowlkes et al. (2010) provide a good review of automatic segmentation
techniques and also compare their performance on the Berkeley Segmentation Dataset and
Benchmark (Martin, Fowlkes, Tal et al. 2001).'? Additional comparison papers and databases
include those by Unnikrishnan, Pantofaru, and Hebert (2007); Alpert, Galun, Basri et al.
(2007); Estrada and Jepson (2009).

The topic of active contours has a long history, beginning with the seminal work on
snakes and other energy-minimizing variational methods (Kass, Witkin, and Terzopoulos
1988; Cootes, Cooper, Taylor et al. 1995; Blake and Isard 1998), continuing through tech-
niques such as intelligent scissors (Mortensen and Barrett 1995, 1999; Pérez, Blake, and
Gangnet 2001), and culminating in level sets (Malladi, Sethian, and Vemuri 1995; Caselles,
Kimmel, and Sapiro 1997; Sethian 1999; Paragios and Deriche 2000; Sapiro 2001; Osher and
Paragios 2003; Paragios, Faugeras, Chan et al. 2005; Cremers, Rousson, and Deriche 2007;
Rousson and Paragios 2008; Paragios and Sgallari 2009), which are currently the most widely

12 hitp://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

306 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

used active contour methods.

Techniques for segmenting images based on local pixel similarities combined with ag-
gregation or splitting methods include watersheds (Vincent and Soille 1991; Beare 2006;
Arbeldez, Maire, Fowlkes et al. 2010), region splitting (Ohlander, Price, and Reddy 1978),
region merging (Brice and Fennema 1970; Pavlidis and Liow 1990; Jain, Topchy, Law et al.
2004), as well as graph-based and probabilistic multi-scale approaches (Felzenszwalb and
Huttenlocher 2004b; Alpert, Galun, Basri et al. 2007).

Mean-shift algorithms, which find modes (peaks) in a density function representation of
the pixels, are presented by Comaniciu and Meer (2002); Paris and Durand (2007). Parametric
mixtures of Gaussians can also be used to represent and segment such pixel densities (Bishop
2006; Ma, Derksen, Hong et al. 2007).

The seminal work on spectral (eigenvalue) methods for image segmentation is the nor-
malized cut algorithm of Shi and Malik (2000). Related work includes that by Weiss (1999);
Meild and Shi (2000, 2001); Malik, Belongie, Leung et al. (2001); Ng, Jordan, and Weiss
(2001); Yu and Shi (2003); Cour, Bénézit, and Shi (2005); Sharon, Galun, Sharon et al.
(2006); Tolliver and Miller (2006); Wang and Oliensis (2010).

Continuous-energy-based (variational) approaches to interactive segmentation include Leclerc
(1989); Mumford and Shah (1989); Chan and Vese (1992); Zhu and Yuille (1996); Tabb and
Ahuja (1997). Discrete variants of such problems are usually optimized using binary graph
cuts or other combinatorial energy minimization methods (Boykov and Jolly 2001; Boykov
and Kolmogorov 2003; Rother, Kolmogorov, and Blake 2004; Kolmogorov and Boykov 2005;
Cui, Yang, Wen et al. 2008; Vicente, Kolmogorov, and Rother 2008; Lempitsky and Boykov
2007; Lempitsky, Blake, and Rother 2008), although continuous optimization techniques fol-
lowed by thresholding can also be used (Grady 2006; Grady and Ali 2008; Singaraju, Grady,
and Vidal 2008; Criminisi, Sharp, and Blake 2008; Grady 2008; Bai and Sapiro 2009; Cou-
prie, Grady, Najman et al. 2009). Boykov and Funka-Lea (2006) present a good survey of
various energy-based techniques for binary object segmentation.

5.7 Exercises

Ex 5.1: Snake evolution Prove that, in the absence of external forces, a snake will always
shrink to a small circle and eventually a single point, regardless of whether first- or second-
order smoothness (or some combination) is used.

(Hint: If you can show that the evolution of the x(s) and y(s) components are indepen-
dent, you can analyze the 1D case more easily.)

Ex 5.2: Snake tracker Implement a snake-based contour tracker:

5.7 Exercises 307

1. Decide whether to use a large number of contour points or a smaller number interpo-
lated with a B-spline.

2. Define your internal smoothness energy function and decide what image-based attrac-
tive forces to use.

3. Ateach iteration, set up the banded linear system of equations (quadratic energy func-
tion) and solve it using banded Cholesky factorization (Appendix A.4).

Ex 5.3: Intelligent scissors Implement the intelligent scissors (live-wire) interactive seg-
mentation algorithm (Mortensen and Barrett 1995) and design a graphical user interface
(GUI) to let you draw such curves over an image and use them for segmentation.

Ex 5.4: Region segmentation Implement one of the region segmentation algorithms de-
scribed in this chapter. Some popular segmentation algorithms include:

e k-means (Section 5.3.1);

e mixtures of Gaussians (Section 5.3.1);

e mean shift (Section 5.3.2) and Exercise 5.5;

e normalized cuts (Section 5.4);

o similarity graph-based segmentation (Section 5.2.4);

e binary Markov random fields solved using graph cuts (Section 5.5).

Apply your region segmentation to a video sequence and use it to track moving regions
from frame to frame.

Alternatively, test out your segmentation algorithm on the Berkeley segmentation database
(Martin, Fowlkes, Tal e al. 2001).

Ex 5.5: Mean shift Develop a mean-shift segmentation algorithm for color images (Co-
maniciu and Meer 2002).

1. Convert your image to L*a*b* space, or keep the original RGB colors, and augment
them with the pixel (z, y) locations.

2. For every pixel (L, a, b, z,y), compute the weighted mean of its neighbors using either
a unit ball (Epanechnikov kernel) or finite-radius Gaussian, or some other kernel of
your choosing. Weight the color and spatial scales differently, e.g., using values of
(hs, hy, M) = (16, 19, 40) as shown in Figure 5.18.

308

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Replace the current value with this weighted mean and iterate until either the motion is
below a threshold or a finite number of steps has been taken.

Cluster all final values (modes) that are within a threshold, i.e., find the connected
components. Since each pixel is associated with a final mean-shift (mode) value, this
results in an image segmentation, i.e., each pixel is labeled with its final component.

(Optional) Use a random subset of the pixels as starting points and find which com-
ponent each unlabeled pixel belongs to, either by finding its nearest neighbor or by
iterating the mean shift until it finds a neighboring track of mean-shift values. Describe
the data structures you use to make this efficient.

(Optional) Mean shift divides the kernel density function estimate by the local weight-
ing to obtain a step size that is guaranteed to converge but may be slow. Use an alter-
native step size estimation algorithm from the optimization literature to see if you can
make the algorithm converge faster.

6.1

6.2

6.3

6.4
6.5

Chapter 6

Feature-based alignment

2D and 3D feature-based alignment 311
6.1.1 2D alignment using leastsquares 312
6.1.2 Application: Panography 0. 314
6.1.3 Iterative algorithms 315
6.1.4 Robust least squares and RANSAC 318
6.1.5 3Dalignment 320
Poseestimation 321
6.2.1 Linearalgorithms L . 322
6.2.2 Tterative algorithms, 324
6.2.3 Application: Augmented reality 326
Geometric intrinsic calibration Lo, 327
6.3.1 Calibrationpatterns 327
6.3.2 Vanishingpoints 329
6.3.3 Application: Single view metrology 331
6.3.4 Rotational motion Lo 332
6.3.5 Radialdistortion L o 334
Additional reading Lo 335
Exercises 336

310 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(©) (d)

Figure 6.1 Geometric alignment and calibration: (a) geometric alignment of 2D images for
stitching (Szeliski and Shum 1997) © 1997 ACM; (b) a two-dimensional calibration target
(Zhang 2000) (©) 2000 IEEE; (c) calibration from vanishing points; (d) scene with easy-to-
find lines and vanishing directions (Criminisi, Reid, and Zisserman 2000) (©) 2000 Springer.

6.1 2D and 3D feature-based alignment 311

y“ similarityQ projective
translation
_r

-
Euclidean Ae L

Figure 6.2 Basic set of 2D planar transformations

Once we have extracted features from images, the next stage in many vision algorithms is
to match these features across different images (Section 4.1.3). An important component of
this matching is to verify whether the set of matching features is geometrically consistent,
e.g., whether the feature displacements can be described by a simple 2D or 3D geometric
transformation. The computed motions can then be used in other applications such as image
stitching (Chapter 9) or augmented reality (Section 6.2.3).

In this chapter, we look at the topic of geometric image registration, i.e., the computation
of 2D and 3D transformations that map features in one image to another (Section 6.1). One
special case of this problem is pose estimation, which is determining a camera’s position
relative to a known 3D object or scene (Section 6.2). Another case is the computation of a
camera’s intrinsic calibration, which consists of the internal parameters such as focal length
and radial distortion (Section 6.3). In Chapter 7, we look at the related problems of how
to estimate 3D point structure from 2D matches (triangulation) and how to simultaneously
estimate 3D geometry and camera motion (structure from motion).

6.1 2D and 3D feature-based alignment

Feature-based alignment is the problem of estimating the motion between two or more sets
of matched 2D or 3D points. In this section, we restrict ourselves to global parametric trans-
formations, such as those described in Section 2.1.2 and shown in Table 2.1 and Figure 6.2,
or higher order transformation for curved surfaces (Shashua and Toelg 1997; Can, Stewart,
Roysam et al. 2002). Applications to non-rigid or elastic deformations (Bookstein 1989;
Szeliski and Lavallée 1996; Torresani, Hertzmann, and Bregler 2008) are examined in Sec-
tions 8.3 and 12.6.4.

312 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transform Matrix Parameters p Jacobian J
10 ¢ (10
translation 01 ¢, (ta, ty) 0 1
cy —Sop U -1 0 —spx — coy
Euclidean S Cp 1y (tzvty79) 0 1 copx— sy
1+a —-b t, (1 0 = —y
similarity b 1+4a t, (tety, a,b) 01y =
14+aw aon ta (10 2 y 0 0
affine a1 L+an ty (tz,ty, oo, @01, @10, G11) 01 00 z y
1+ hoo ho1 ho2
h1o 1+hir hio
projective hao hot 1 (hoos ko1, - - -, ha1) (see Section 6.1.3)

Table 6.1 Jacobians of the 2D coordinate transformations ' = f(x; p) shown in Table 2.1,
where we have re-parameterized the motions so that they are identity for p = 0.

6.1.1 2D alignment using least squares

Given a set of matched feature points {(x;, z})} and a planar parametric transformation' of
the form

' = f(x;p), ©.1)

how can we produce the best estimate of the motion parameters p? The usual way to do this
is to use least squares, i.e., to minimize the sum of squared residuals

Bis =Y _[Irill> = D I f (@i p) — |, (6.2)

where
ri = f(xi;p) — o) = &) — T (6.3)

is the residual between the measured location &, and its corresponding current predicted
location &, = f(x;; p). (See Appendix A.2 for more on least squares and Appendix B.2 for
a statistical justification.)

! For examples of non-planar parametric models, such as quadrics, see the work of Shashua and Toelg (1997);
Shashua and Wexler (2001).

6.1 2D and 3D feature-based alignment 313

Many of the motion models presented in Section 2.1.2 and Table 2.1, i.e., translation,
similarity, and affine, have a linear relationship between the amount of motion Az = ' — x
and the unknown parameters p,

Az =z’ —x = J(z)p, (6.4)

where J = 0f /Op is the Jacobian of the transformation f with respect to the motion param-
eters p (see Table 6.1). In this case, a simple linear regression (linear least squares problem)
can be formulated as

Eus = Y |J(@)p - Az 6.5)

= pT ZJT(:ci)J(wi) p—2pT ZJT(:ci)Aa:Z— +ZHA£B¢”2 (6.6)

= p'Ap-2pTb+ec 6.7)
The minimum can be found by solving the symmetric positive definite (SPD) system of nor-
mal equations®
Ap=b, (6.8)
where
A= T (@) (z) (6.9)

is called the Hessian and b = 3, J” (x;)Ax;. For the case of pure translation, the result-
ing equations have a particularly simple form, i.e., the translation is the average translation
between corresponding points or, equivalently, the translation of the point centroids.

Uncertainty weighting. The above least squares formulation assumes that all feature points
are matched with the same accuracy. This is often not the case, since certain points may fall
into more textured regions than others. If we associate a scalar variance estimate o7 with
each correspondence, we can minimize the weighted least squares problem instead,’

Bwis = Yo, %|Iril>. (6.10)

As shown in Section 8.1.3, a covariance estimate for patch-based matching can be obtained
by multiplying the inverse of the patch Hessian A; (8.55) with the per-pixel noise covariance

2 For poorly conditioned problems, it is better to use QR decomposition on the set of linear equations J (z;)p =
Aw; instead of the normal equations (Bjorck 1996; Golub and Van Loan 1996). However, such conditions rarely
arise in image registration.

3 Problems where each measurement can have a different variance or certainty are called heteroscedastic models.

314 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 6.3 A simple panograph consisting of three images automatically aligned with a
translational model and then averaged together.

o2 (8.44). Weighting each squared residual by its inverse covariance ;- = o, 2A; (which
is called the information matrix), we obtain

ECWLS = Z |‘Ti||;71 - Zr?E;lri = ZU;QT‘;—FAZ'TZ'. (611)

6.1.2 Application: Panography

One of the simplest (and most fun) applications of image alignment is a special form of image
stitching called panography. In a panograph, images are translated and optionally rotated and
scaled before being blended with simple averaging (Figure 6.3). This process mimics the
photographic collages created by artist David Hockney, although his compositions use an
opaque overlay model, being created out of regular photographs.

In most of the examples seen on the Web, the images are aligned by hand for best artistic
effect.* However, it is also possible to use feature matching and alignment techniques to
perform the registration automatically (Nomura, Zhang, and Nayar 2007; Zelnik-Manor and
Perona 2007).

Consider a simple translational model. We want all the corresponding features in different
images to line up as best as possible. Let £; be the location of the jth image coordinate frame
in the global composite frame and x;; be the location of the ith matched feature in the jth
image. In order to align the images, we wish to minimize the least squares error

EpLs = Z ||(tj + (l?ij) — £137;||2, (612)
ij

4 http://www.flickr.com/groups/panography/.

http://www.flickr.com/groups/panography/

6.1 2D and 3D feature-based alignment 315

where x; is the consensus (average) position of feature ¢ in the global coordinate frame.
(An alternative approach is to register each pair of overlapping images separately and then
compute a consensus location for each frame—see Exercise 6.2.)

The above least squares problem is indeterminate (you can add a constant offset to all the
frame and point locations ¢; and x;). To fix this, either pick one frame as being at the origin
or add a constraint to make the average frame offsets be 0.

The formulas for adding rotation and scale transformations are straightforward and are
left as an exercise (Exercise 6.2). See if you can create some collages that you would be
happy to share with others on the Web.

6.1.3 Iterative algorithms

While linear least squares is the simplest method for estimating parameters, most problems in
computer vision do not have a simple linear relationship between the measurements and the
unknowns. In this case, the resulting problem is called non-linear least squares or non-linear
regression.

Consider, for example, the problem of estimating a rigid Euclidean 2D transformation
(translation plus rotation) between two sets of points. If we parameterize this transformation
by the translation amount (¢, ty) and the rotation angle 0, as in Table 2.1, the Jacobian of
this transformation, given in Table 6.1, depends on the current value of §. Notice how in
Table 6.1, we have re-parameterized the motion matrices so that they are always the identity
at the origin p = 0, which makes it easier to initialize the motion parameters.

To minimize the non-linear least squares problem, we iteratively find an update Ap to the
current parameter estimate p by minimizing

Enis(Ap) = Y |If(zsp+Ap) — | (6.13)
~ > (i p)Ap — 7l (6.14)
= Ap” ZJTJ Ap —2Ap" ZJTrl- +Z||m||2 (6.15)
= ApTAAp —2ApTb + ¢, (6.16)

where the “Hessian™ A is the same as Equation (6.9) and the right hand side vector

b= Z JT(x)r (6.17)

5 The “Hessian” A is not the true Hessian (second derivative) of the non-linear least squares problem (6.13).
Instead, it is the approximate Hessian, which neglects second (and higher) order derivatives of f(x;; p + Ap).

316 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

is now a Jacobian-weighted sum of residual vectors. This makes intuitive sense, as the pa-
rameters are pulled in the direction of the prediction error with a strength proportional to the
Jacobian.

Once A and b have been computed, we solve for Ap using

(A + Mdiag(A))Ap = b, (6.18)

and update the parameter vector p <« p + Ap accordingly. The parameter)\ is an addi-
tional damping parameter used to ensure that the system takes a “downhill” step in energy
(squared error) and is an essential component of the Levenberg—Marquardt algorithm (de-
scribed in more detail in Appendix A.3). In many applications, it can be set to 0 if the system
is successfully converging.

For the case of our 2D translation+rotation, we end up with a 3 x 3 set of normal equations
in the unknowns (6t;, dt,,06). An initial guess for (¢;,t,,6) can be obtained by fitting a
four-parameter similarity transform in (¢,%,,c, s) and then setting @ = tan~'(s/c). An
alternative approach is to estimate the translation parameters using the centroids of the 2D
points and to then estimate the rotation angle using polar coordinates (Exercise 6.3).

For the other 2D motion models, the derivatives in Table 6.1 are all fairly straightforward,
except for the projective 2D motion (homography), which arises in image-stitching applica-
tions (Chapter 9). These equations can be re-written from (2.21) in their new parametric form

as
1+ h h h h 1+ h h
o = (14 hoo)z + hory + hoz and ¢ = 102+ (14 hi)y + 12 6.19)
haox + hory + 1 hoox + ho1y +1
The Jacobian is therefore
1 1 —a'z —a
J_ of _ 1oy 0 00 x/a: x/y ’ 6.20)
op D| 0 0 0 2z vy 1 —yz —yy

where D = hggx + ho1y + 1 is the denominator in (6.19), which depends on the current
parameter settings (as do =’ and y").

An initial guess for the eight unknowns {hgg, ho1, . - - , ha1 } can be obtained by multiply-
ing both sides of the equations in (6.19) through by the denominator, which yields the linear
set of equations,

! 1 0 0 O i 7! o0
SO o SRS N (6.21)
Yy —y 00 0 2 vy 1 —gz -9y :

ha1

However, this is not optimal from a statistical point of view, since the denominator D, which
was used to multiply each equation, can vary quite a bit from point to point.®

6 Hartley and Zisserman (2004) call this strategy of forming linear equations from rational equations the direct

6.1 2D and 3D feature-based alignment 317

One way to compensate for this is to reweight each equation by the inverse of the current
estimate of the denominator, D,

hoo

1|2 -2 1z vy 1 0 0 0 —3'x -2y
il = : . 6.22
D [1 l 0 0 0 =) ()

While this may at first seem to be the exact same set of equations as (6.21), because least
squares is being used to solve the over-determined set of equations, the weightings do matter
and produce a different set of normal equations that performs better in practice.

The most principled way to do the estimation, however, is to directly minimize the squared
residual equations (6.13) using the Gauss—Newton approximation, i.e., performing a first-
order Taylor series expansion in p, as shown in (6.14), which yields the set of equations

Ahoo

Y] 1 -1 s
' —x _Lllz oy 1 0 0 O a:x a~c/y : ' (6.23)
0 0 z y 1 —gz —gy :
Ahoy

While these look similar to (6.22), they differ in two important respects. First, the left hand
side consists of unweighted prediction errors rather than point displacements and the solution
vector is a perturbation to the parameter vector p. Second, the quantities inside J involve
predicted feature locations (%', §') instead of sensed feature locations (&, ¢’). Both of these
differences are subtle and yet they lead to an algorithm that, when combined with proper
checking for downhill steps (as in the Levenberg—Marquardt algorithm), will converge to a
local minimum. Note that iterating Equations (6.22) is not guaranteed to converge, since it is
not minimizing a well-defined energy function.

Equation (6.23) is analogous to the additive algorithm for direct intensity-based regis-
tration (Section 8.2), since the change to the full transformation is being computed. If we
prepend an incremental homography to the current homography instead, i.e., we use a com-
positional algorithm (described in Section 8.2), we get D = 1 (since p = 0) and the above
formula simplifies to

Ahgo
- z y 1 00 0 —22 —xy
= 0 0 0 (6.24)
Ahgy

where we have replaced (%', 3’) with (z,y) for conciseness. (Notice how this results in the
same Jacobian as (8.63).)

linear transform, but that term is more commonly associated with pose estimation (Section 6.2). Note also that our
definition of the h;; parameters differs from that used in their book, since we define h;; to be the difference from
unity and we do not leave hoo as a free parameter, which means that we cannot handle certain extreme homographies.

318 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6.1.4 Robust least squares and RANSAC

While regular least squares is the method of choice for measurements where the noise follows
a normal (Gaussian) distribution, more robust versions of least squares are required when
there are outliers among the correspondences (as there almost always are). In this case, it is
preferable to use an M-estimator (Huber 1981; Hampel, Ronchetti, Rousseeuw et al. 1986;
Black and Rangarajan 1996; Stewart 1999), which involves applying a robust penalty function
p(r) to the residuals

Eris(Ap) = Zp) (6.25)

instead of squaring them.
We can take the derivative of this function with respect to p and set it to 0,

rdl _ 5 il o
r; 7’ =0, 6.26
Sl = X (626)

where 1(r) = p/(r) is the derivative of p and is called the influence function. If we introduce
aweight function, w(r) = ¥(r)/r, we observe that finding the stationary point of (6.25) using
(6.26) is equivalent to minimizing the iteratively reweighted least squares (IRLS) problem

Erws = Y _w(||r:|)[Ir:]?, (6.27)

i

where the w(||7;||) play the same local weighting role as o; 2 in (6.10). The IRLS algo-
rithm alternates between computing the influence functions w(||7;||) and solving the result-
ing weighted least squares problem (with fixed w values). Other incremental robust least
squares algorithms can be found in the work of Sawhney and Ayer (1996); Black and Anan-
dan (1996); Black and Rangarajan (1996); Baker, Gross, Ishikawa et al. (2003) and textbooks
and tutorials on robust statistics (Huber 1981; Hampel, Ronchetti, Rousseeuw et al. 1986;
Rousseeuw and Leroy 1987; Stewart 1999).

While M-estimators can definitely help reduce the influence of outliers, in some cases,
starting with too many outliers will prevent IRLS (or other gradient descent algorithms) from
converging to the global optimum. A better approach is often to find a starting set of inlier
correspondences, i.e., points that are consistent with a dominant motion estimate.’

Two widely used approaches to this problem are called RANdom SAmple Consensus, or
RANSAC for short (Fischler and Bolles 1981), and least median of squares (LMS) (Rousseeuw
1984). Both techniques start by selecting (at random) a subset of & correspondences, which is

7 For pixel-based alignment methods (Section 8.1.1), hierarchical (coarse-to-fine) techniques are often used to
lock onto the dominant motion in a scene.

6.1 2D and 3D feature-based alignment 319

then used to compute an initial estimate for p. The residuals of the full set of correspondences
are then computed as

ri = (i p) — &, (6.28)
where & are the estimated (mapped) locations and ii are the sensed (detected) feature point
locations.

The RANSAC technique then counts the number of inliers that are within e of their pre-
dicted location, i.e., whose ||7;|| < e. (The e value is application dependent but is often
around 1-3 pixels.) Least median of squares finds the median value of the ||7;||? values. The
random selection process is repeated S times and the sample set with the largest number of
inliers (or with the smallest median residual) is kept as the final solution. Either the initial
parameter guess p or the full set of computed inliers is then passed on to the next data fitting
stage.

When the number of measurements is quite large, it may be preferable to only score a
subset of the measurements in an initial round that selects the most plausible hypotheses for
additional scoring and selection. This modification of RANSAC, which can significantly
speed up its performance, is called Preemptive RANSAC (Nistér 2003). In another variant
on RANSAC called PROSAC (PROgressive SAmple Consensus), random samples are ini-
tially added from the most “confident” matches, thereby speeding up the process of finding a
(statistically) likely good set of inliers (Chum and Matas 2005).

To ensure that the random sampling has a good chance of finding a true set of inliers, a
sufficient number of trials .S must be tried. Let p be the probability that any given correspon-
dence is valid and P be the total probability of success after S trials. The likelihood in one
trial that all £ random samples are inliers is pk. Therefore, the likelihood that S such trials
will all fail is

1—-P=(1-phH° (6.29)
and the required minimum number of trials is
log(1 — P)
= . 6.30
log (1~ %) (©30

Stewart (1999) gives examples of the required number of trials .S to attain a 99% proba-
bility of success. As you can see from Table 6.2, the number of trials grows quickly with the
number of sample points used. This provides a strong incentive to use the minimum number
of sample points k possible for any given trial, which is how RANSAC is normally used in
practice.

Uncertainty modeling

In addition to robustly computing a good alignment, some applications require the compu-
tation of uncertainty (see Appendix B.6). For linear problems, this estimate can be obtained

320 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

k p S
3 05 35
6 06 97
6 05 293

Table 6.2 Number of trials S to attain a 99% probability of success (Stewart 1999).

by inverting the Hessian matrix (6.9) and multiplying it by the feature position noise (if these
have not already been used to weight the individual measurements, as in Equations (6.10)
and 6.11)). In statistics, the Hessian, which is the inverse covariance, is sometimes called the
(Fisher) information matrix (Appendix B.1.1).

When the problem involves non-linear least squares, the inverse of the Hessian matrix
provides the Cramer—Rao lower bound on the covariance matrix, i.e., it provides the minimum
amount of covariance in a given solution, which can actually have a wider spread (“longer
tails”) if the energy flattens out away from the local minimum where the optimal solution is
found.

6.1.5 3D alignment

Instead of aligning 2D sets of image features, many computer vision applications require the
alignment of 3D points. In the case where the 3D transformations are linear in the motion
parameters, e.g., for translation, similarity, and affine, regular least squares (6.5) can be used.

The case of rigid (Euclidean) motion,

Egrsp = »_|lo} — Ra; — t[|°, (6.31)
%

which arises more frequently and is often called the absolute orientation problem (Horn
1987), requires slightly different techniques. If only scalar weightings are being used (as
opposed to full 3D per-point anisotropic covariance estimates), the weighted centroids of the
two point clouds ¢ and ¢’ can be used to estimate the translation ¢ = ¢/ — Rc.® We are then
left with the problem of estimating the rotation between two sets of points {&; = x; — ¢}
and {# = x/ — ¢’} that are both centered at the origin.

One commonly used technique is called the orthogonal Procrustes algorithm (Golub and
Van Loan 1996, p. 601) and involves computing the singular value decomposition (SVD) of

8 When full covariances are used, they are transformed by the rotation and so a closed-form solution for transla-
tion is not possible.

6.2 Pose estimation 321

the 3 x 3 correlation matrix

c=> &' =Uunv’. (6.32)

The rotation matrix is then obtained as R = UV L. (Verify this for yourself when &' = R.)

Another technique is the absolute orientation algorithm (Horn 1987) for estimating the
unit quaternion corresponding to the rotation matrix R, which involves forming a 4 x 4 matrix
from the entries in C' and then finding the eigenvector associated with its largest positive
eigenvalue.

Lorusso, Eggert, and Fisher (1995) experimentally compare these two techniques to two
additional techniques proposed in the literature, but find that the difference in accuracy is
negligible (well below the effects of measurement noise).

In situations where these closed-form algorithms are not applicable, e.g., when full 3D
covariances are being used or when the 3D alignment is part of some larger optimization, the
incremental rotation update introduced in Section 2.1.4 (2.35-2.36), which is parameterized
by an instantaneous rotation vector w, can be used (See Section 9.1.3 for an application to
image stitching.)

In some situations, e.g., when merging range data maps, the correspondence between
data points is not known a priori. In this case, iterative algorithms that start by matching
nearby points and then update the most likely correspondence can be used (Besl and McKay
1992; Zhang 1994; Szeliski and Lavallée 1996; Gold, Rangarajan, Lu ef al. 1998; David,
DeMenthon, Duraiswami et al. 2004; Li and Hartley 2007; Enqvist, Josephson, and Kahl
2009). These techniques are discussed in more detail in Section 12.2.1.

6.2 Pose estimation

A particular instance of feature-based alignment, which occurs very often, is estimating an
object’s 3D pose from a set of 2D point projections. This pose estimation problem is also
known as extrinsic calibration, as opposed to the intrinsic calibration of internal camera pa-
rameters such as focal length, which we discuss in Section 6.3. The problem of recovering
pose from three correspondences, which is the minimal amount of information necessary,
is known as the perspective-3-point-problem (P3P), with extensions to larger numbers of
points collectively known as PnP (Haralick, Lee, Ottenberg ef al. 1994; Quan and Lan 1999;
Moreno-Noguer, Lepetit, and Fua 2007).

In this section, we look at some of the techniques that have been developed to solve such
problems, starting with the direct linear transform (DLT), which recovers a 3 x 4 camera ma-
trix, followed by other “linear” algorithms, and then looking at statistically optimal iterative
algorithms.

322 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6.2.1 Linear algorithms

The simplest way to recover the pose of the camera is to form a set of linear equations analo-
gous to those used for 2D motion estimation (6.19) from the camera matrix form of perspec-
tive projection (2.55-2.56),
P PooXi + po1Yi + po2Zi + pos (6.33)
P20Xi + p21Yi + p22Zi + pas
p1oXi +p11Yi + p12Z; + p13

- , (6.34)
Y 20X + D21Y; + P22 Z; + a3

where (x;,y;) are the measured 2D feature locations and (X;,Y;, Z;) are the known 3D
feature locations (Figure 6.4). As with (6.21), this system of equations can be solved in a
linear fashion for the unknowns in the camera matrix P by multiplying the denominator on

both sides of the equation.’

The resulting algorithm is called the direct linear transform
(DLT) and is commonly attributed to Sutherland (1974). (For a more in-depth discussion,
refer to the work of Hartley and Zisserman (2004).) In order to compute the 12 (or 11)
unknowns in P, at least six correspondences between 3D and 2D locations must be known.

As with the case of estimating homographies (6.21-6.23), more accurate results for the
entries in P can be obtained by directly minimizing the set of Equations (6.33—6.34) using
non-linear least squares with a small number of iterations.

Once the entries in P have been recovered, it is possible to recover both the intrinsic
calibration matrix K and the rigid transformation (R, t) by observing from Equation (2.56)
that
P = K[R]t]. (6.35)

Since K is by convention upper-triangular (see the discussion in Section 2.1.5), both K and
R can be obtained from the front 3 x 3 sub-matrix of P using RQ factorization (Golub and
Van Loan 1996).1°

In most applications, however, we have some prior knowledge about the intrinsic cali-
bration matrix K, e.g., that the pixels are square, the skew is very small, and the optical
center is near the center of the image (2.57-2.59). Such constraints can be incorporated into
a non-linear minimization of the parameters in K and (R, t), as described in Section 6.2.2.

In the case where the camera is already calibrated, i.e., the matrix K is known (Sec-
tion 6.3), we can perform pose estimation using as few as three points (Fischler and Bolles
1981; Haralick, Lee, Ottenberg ef al. 1994; Quan and Lan 1999). The basic observation that
these linear PnP (perspective n-point) algorithms employ is that the visual angle between any

9 Because P is unknown up to a scale, we can either fix one of the entries, e.g., p23 = 1, or find the smallest
singular vector of the set of linear equations.

10 Note the unfortunate clash of terminologies: In matrix algebra textbooks, R represents an upper-triangular
matrix; in computer vision, R is an orthogonal rotation.

6.2 Pose estimation 323

pi = (Xi,Yi,Zi,Wi)

Figure 6.4 Pose estimation by the direct linear transform and by measuring visual angles
and distances between pairs of points.

pair of 2D points &; and &; must be the same as the angle between their corresponding 3D
points p; and p; (Figure 6.4).

Given a set of corresponding 2D and 3D points {(&;, p;) }, where the &, are unit directions
obtained by transforming 2D pixel measurements x; to unit norm 3D directions &; through
the inverse calibration matrix K,

& =N(K 'x;) = K 'a; /| K x|, (6.36)
the unknowns are the distances d; from the camera origin c to the 3D points p;, where
p;, =dix; +c (6.37)

(Figure 6.4). The cosine law for triangle A(c, p;, p;) gives us

fij (d“ d]) = d? + d? — Zdidjcij — dfj =0, (6.38)
where
cij =cosby; = &; - & (6.39)
and
&3 = llp; — p; 1> (6.40)

We can take any triplet of constraints (fi;, fix, f;x) and eliminate the d; and dj, using
Sylvester resultants (Cox, Little, and O’Shea 2007) to obtain a quartic equation in d?,

gzjk(dlz) = a4d§ + agd? + agd? + Clel2 + ag = 0. (641)
Given five or more correspondences, we can generate % triplets to obtain a linear
estimate (using SVD) for the values of (d, dS, d?, d?) (Quan and Lan 1999). Estimates for

1?7 Y T

324 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

d? can computed as ratios of successive d>""2/d?" estimates and these can be averaged to
obtain a final estimate of d? (and hence d;).

Once the individual estimates of the d; distances have been computed, we can generate
a 3D structure consisting of the scaled point directions d;Z;, which can then be aligned with
the 3D point cloud {p,} using absolute orientation (Section 6.1.5) to obtained the desired
pose estimate. Quan and Lan (1999) give accuracy results for this and other techniques,
which use fewer points but require more complicated algebraic manipulations. The paper by
Moreno-Noguer, Lepetit, and Fua (2007) reviews more recent alternatives and also gives a
lower complexity algorithm that typically produces more accurate results.

Unfortunately, because minimal PnP solutions can be quite noise sensitive and also suffer
from bas-relief ambiguities (e.g., depth reversals) (Section 7.4.3), it is often preferable to use
the linear six-point algorithm to guess an initial pose and then optimize this estimate using
the iterative technique described in Section 6.2.2.

An alternative pose estimation algorithm involves starting with a scaled orthographic pro-
jection model and then iteratively refining this initial estimate using a more accurate perspec-
tive projection model (DeMenthon and Davis 1995). The attraction of this model, as stated
in the paper’s title, is that it can be implemented “in 25 lines of [Mathematica] code”.

6.2.2 Iterative algorithms

The most accurate (and flexible) way to estimate pose is to directly minimize the squared (or
robust) reprojection error for the 2D points as a function of the unknown pose parameters in
(R, t) and optionally K using non-linear least squares (Tsai 1987; Bogart 1991; Gleicher
and Witkin 1992). We can write the projection equations as

xz; = f(p;; R, t,K) (6.42)

and iteratively minimize the robustified linearized reprojection errors

Exip = zi:p <SIJ;AR+ %—{At + %AK — m) , (6.43)
where r; = ®; — &; is the current residual vector (2D error in predicted position) and the
partial derivatives are with respect to the unknown pose parameters (rotation, translation, and
optionally calibration). Note that if full 2D covariance estimates are available for the 2D
feature locations, the above squared norm can be weighted by the inverse point covariance
matrix, as in Equation (6.11).

An easier to understand (and implement) version of the above non-linear regression prob-
lem can be constructed by re-writing the projection equations as a concatenation of simpler
steps, each of which transforms a 4D homogeneous coordinate p; by a simple transformation

6.2 Pose estimation 325

y(3) y(2) y(1)
X < fo(x) =Kx == — fo(x)=piz |- . fr(X) =Rx <= > fr(X) = x-Cc |« p
T T I
| | |
R Iy I
k 0 G

Figure 6.5 A set of chained transforms for projecting a 3D point p, to a 2D measurement x;
through a series of transformations f (k) each of which is controlled by its own set of param-
eters. The dashed lines indicate the flow of information as partial derivatives are computed
during a backward pass.

such as translation, rotation, or perspective division (Figure 6.5). The resulting projection
equations can be written as

y(l) = fr(picj) =p; —cj, (6.44)

y? = fry"ig;) = Rig;)y", (6.45)
(3) @ _ Y2

yo o= o) =Ty (6.46)
z, = foly®ik)=Kk)y®. (6.47)

Note that in these equations, we have indexed the camera centers ¢; and camera rotation
quaternions g, by an index j, in case more than one pose of the calibration object is being
used (see also Section 7.4.) We are also using the camera center c; instead of the world
translation £, since this is a more natural parameter to estimate.

The advantage of this chained set of transformations is that each one has a simple partial
derivative with respect both to its parameters and to its input. Thus, once the predicted value
of &; has been computed based on the 3D point location p, and the current values of the pose
parameters (c;, q;, k), we can obtain all of the required partial derivatives using the chain

rule
8’1"1' o (‘)ri (‘)y(k) 6.48
ap® — Dy® gp) (6.48)

where p(*) indicates one of the parameter vectors that is being optimized. (This same “trick”
is used in neural networks as part of the backpropagation algorithm (Bishop 2006).)

The one special case in this formulation that can be considerably simplified is the compu-
tation of the rotation update. Instead of directly computing the derivatives of the 3 x 3 rotation
matrix R(q) as a function of the unit quaternion entries, you can prepend the incremental ro-
tation matrix A R(w) given in Equation (2.35) to the current rotation matrix and compute the

326 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(d)

Figure 6.6 The VideoMouse can sense six degrees of freedom relative to a specially printed
mouse pad using its embedded camera (Hinckley, Sinclair, Hanson ef al. 1999) © 1999
ACM: (a) top view of the mouse; (b) view of the mouse showing the curved base for rocking;
(c) moving the mouse pad with the other hand extends the interaction capabilities; (d) the
resulting movement seen on the screen.

partial derivative of the transform with respect to these parameters, which results in a simple
cross product of the backward chaining partial derivative and the outgoing 3D vector (2.36).

6.2.3 Application: Augmented reality

A widely used application of pose estimation is augmented reality, where virtual 3D images
or annotations are superimposed on top of a live video feed, either through the use of see-
through glasses (a head-mounted display) or on a regular computer or mobile device screen
(Azuma, Baillot, Behringer ef al. 2001; Haller, Billinghurst, and Thomas 2007). In some
applications, a special pattern printed on cards or in a book is tracked to perform the aug-
mentation (Kato, Billinghurst, Poupyrev et al. 2000; Billinghurst, Kato, and Poupyrev 2001).
For a desktop application, a grid of dots printed on a mouse pad can be tracked by a camera
embedded in an augmented mouse to give the user control of a full six degrees of freedom
over their position and orientation in a 3D space (Hinckley, Sinclair, Hanson ez al. 1999), as
shown in Figure 6.6.

Sometimes, the scene itself provides a convenient object to track, such as the rectangle
defining a desktop used in through-the-lens camera control (Gleicher and Witkin 1992). In
outdoor locations, such as film sets, it is more common to place special markers such as
brightly colored balls in the scene to make it easier to find and track them (Bogart 1991). In
older applications, surveying techniques were used to determine the locations of these balls
before filming. Today, it is more common to apply structure-from-motion directly to the film
footage itself (Section 7.4.2).

Rapid pose estimation is also central to tracking the position and orientation of the hand-
held remote controls used in Nintendo’s Wii game systems. A high-speed camera embedded
in the remote control is used to track the locations of the infrared (IR) LEDs in the bar that

6.3 Geometric intrinsic calibration 327

is mounted on the TV monitor. Pose estimation is then used to infer the remote control’s
location and orientation at very high frame rates. The Wii system can be extended to a variety
of other user interaction applications by mounting the bar on a hand-held device, as described
by Johnny Lee.!!

Exercises 6.4 and 6.5 have you implement two different tracking and pose estimation sys-
tems for augmented-reality applications. The first system tracks the outline of a rectangular
object, such as a book cover or magazine page, and the second has you track the pose of a
hand-held Rubik’s cube.

6.3 Geometric intrinsic calibration

As described above in Equations (6.42—6.43), the computation of the internal (intrinsic) cam-
era calibration parameters can occur simultaneously with the estimation of the (extrinsic)
pose of the camera with respect to a known calibration target. This, indeed, is the “classic”
approach to camera calibration used in both the photogrammetry (Slama 1980) and the com-
puter vision (Tsai 1987) communities. In this section, we look at alternative formulations
(which may not involve the full solution of a non-linear regression problem), the use of alter-
native calibration targets, and the estimation of the non-linear part of camera optics such as
radial distortion.'?

6.3.1 Calibration patterns

The use of a calibration pattern or set of markers is one of the more reliable ways to estimate
a camera’s intrinsic parameters. In photogrammetry, it is common to set up a camera in a
large field looking at distant calibration targets whose exact location has been precomputed
using surveying equipment (Slama 1980; Atkinson 1996; Kraus 1997). In this case, the trans-
lational component of the pose becomes irrelevant and only the camera rotation and intrinsic
parameters need to be recovered.

If a smaller calibration rig needs to be used, e.g., for indoor robotics applications or for
mobile robots that carry their own calibration target, it is best if the calibration object can span
as much of the workspace as possible (Figure 6.8a), as planar targets often fail to accurately
predict the components of the pose that lie far away from the plane. A good way to determine
if the calibration has been successfully performed is to estimate the covariance in the param-
eters (Section 6.1.4) and then project 3D points from various points in the workspace into the
image in order to estimate their 2D positional uncertainty.

T http://johnnylee.net/projects/wii/.
12 In some applications, you can use the EXIF tags associated with a JPEG image to obtain a rough estimate of a
camera’s focal length but this technique should be used with caution as the results are often inaccurate.

http://johnnylee.net/projects/wii/

328 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 6.7 Calibrating a lens by drawing straight lines on cardboard (Debevec, Wenger,
Tchou et al. 2002) © 2002 ACM: (a) an image taken by the video camera showing a hand
holding a metal ruler whose right edge appears vertical in the image; (b) the set of lines drawn
on the cardboard converging on the front nodal point (center of projection) of the lens and
indicating the horizontal field of view.

An alternative method for estimating the focal length and center of projection of a lens
is to place the camera on a large flat piece of cardboard and use a long metal ruler to draw
lines on the cardboard that appear vertical in the image, as shown in Figure 6.7a (Debevec,
Wenger, Tchou et al. 2002). Such lines lie on planes that are parallel to the vertical axis of
the camera sensor and also pass through the lens’ front nodal point. The location of the nodal
point (projected vertically onto the cardboard plane) and the horizontal field of view (deter-
mined from lines that graze the left and right edges of the visible image) can be recovered by
intersecting these lines and measuring their angular extent (Figure 6.7b).

If no calibration pattern is available, it is also possible to perform calibration simulta-
neously with structure and pose recovery (Sections 6.3.4 and 7.4), which is known as self-
calibration (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman 2004; Moons, Van
Gool, and Vergauwen 2010). However, such an approach requires a large amount of imagery
to be accurate.

Planar calibration patterns

When a finite workspace is being used and accurate machining and motion control platforms
are available, a good way to perform calibration is to move a planar calibration target in a
controlled fashion through the workspace volume. This approach is sometimes called the N-
planes calibration approach (Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée,
Szeliski et al. 1992; Grossberg and Nayar 2001) and has the advantage that each camera pixel
can be mapped to a unique 3D ray in space, which takes care of both linear effects modeled

6.3 Geometric intrinsic calibration 329

() (b)

Figure 6.8 Calibration patterns: (a) a three-dimensional target (Quan and Lan 1999) (©) 1999
IEEE; (b) a two-dimensional target (Zhang 2000) © 2000 IEEE. Note that radial distortion
needs to be removed from such images before the feature points can be used for calibration.

by the calibration matrix K and non-linear effects such as radial distortion (Section 6.3.5).

A less cumbersome but also less accurate calibration can be obtained by waving a pla-
nar calibration pattern in front of a camera (Figure 6.8b). In this case, the pattern’s pose
has (in principle) to be recovered in conjunction with the intrinsics. In this technique, each
input image is used to compute a separate homography (6.19-6.23) H mapping the plane’s
calibration points (X;, ¥;, 0) into image coordinates (x;, y;),

zi= | u NK[rO - t] Y, | ~ Hp, (6.49)
1 1

where the r; are the first two columns of R and ~ indicates equality up to scale. From
these, Zhang (2000) shows how to form linear constraints on the nine entries in the B =
K TK~' matrix, from which the calibration matrix K can be recovered using a matrix
square root and inversion. (The matrix B is known as the image of the absolute conic (IAC)
in projective geometry and is commonly used for camera calibration (Hartley and Zisserman
2004, Section 7.5).) If only the focal length is being recovered, the even simpler approach of
using vanishing points can be used instead.

6.3.2 Vanishing points

A common case for calibration that occurs often in practice is when the camera is looking at
a man-made scene with strong extended rectahedral objects such as boxes or room walls. In
this case, we can intersect the 2D lines corresponding to 3D parallel lines to compute their
vanishing points, as described in Section 4.3.3, and use these to determine the intrinsic and
extrinsic calibration parameters (Caprile and Torre 1990; Becker and Bove 1995; Liebowitz

330 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Xy Xo X7 Xo

Xz Xz
(a) (b)

Figure 6.9 Calibration from vanishing points: (a) any pair of finite vanishing points (Z;, Z)
can be used to estimate the focal length; (b) the orthocenter of the vanishing point triangle
gives the optical center of the image c.

and Zisserman 1998; Cipolla, Drummond, and Robertson 1999; Antone and Teller 2002;
Criminisi, Reid, and Zisserman 2000; Hartley and Zisserman 2004; Pflugfelder 2008).

Let us assume that we have detected two or more orthogonal vanishing points, all of which
are finite, i.e., they are not obtained from lines that appear to be parallel in the image plane
(Figure 6.9a). Let us also assume a simplified form for the calibration matrix K where only
the focal length is unknown (2.59). (It is often safe for rough 3D modeling to assume that
the optical center is at the center of the image, that the aspect ratio is 1, and that there is no
skew.) In this case, the projection equation for the vanishing points can be written as

T — Cg
= | yi—cy | ~Rp; =i, (6.50)
f

where p, corresponds to one of the cardinal directions (1,0, 0), (0, 1,0), or (0,0, 1), and 7;
is the ith column of the rotation matrix R.
From the orthogonality between columns of the rotation matrix, we have

Ty~ (2= o) (@5 = ey) + (Ui — ¢y) (Y —) + f2 =0 (6.51)

from which we can obtain an estimate for f2. Note that the accuracy of this estimate increases
as the vanishing points move closer to the center of the image. In other words, it is best to tilt
the calibration pattern a decent amount around the 45° axis, as in Figure 6.9a. Once the focal
length f has been determined, the individual columns of R can be estimated by normalizing
the left hand side of (6.50) and taking cross products. Alternatively, an SVD of the initial R
estimate, which is a variant on orthogonal Procrustes (6.32), can be used.

If all three vanishing points are visible and finite in the same image, it is also possible to
estimate the optical center as the orthocenter of the triangle formed by the three vanishing
points (Caprile and Torre 1990; Hartley and Zisserman 2004, Section 7.6) (Figure 6.9b).

6.3 Geometric intrinsic calibration 331

(b)

Figure 6.10 Single view metrology (Criminisi, Reid, and Zisserman 2000) (©) 2000
Springer: (a) input image showing the three coordinate axes computed from the two hori-
zontal vanishing points (which can be determined from the sidings on the shed); (b) a new
view of the 3D reconstruction.

In practice, however, it is more accurate to re-estimate any unknown intrinsic calibration
parameters using non-linear least squares (6.42).

6.3.3 Application: Single view metrology

A fun application of vanishing point estimation and camera calibration is the single view
metrology system developed by Criminisi, Reid, and Zisserman (2000). Their system allows
people to interactively measure heights and other dimensions as well as to build piecewise-
planar 3D models, as shown in Figure 6.10.

The first step in their system is to identify two orthogonal vanishing points on the ground
plane and the vanishing point for the vertical direction, which can be done by drawing some
parallel sets of lines in the image. (Alternatively, automated techniques such as those dis-
cussed in Section 4.3.3 or by Schaffalitzky and Zisserman (2000) could be used.) The user
then marks a few dimensions in the image, such as the height of a reference object, and
the system can automatically compute the height of another object. Walls and other planar
impostors (geometry) can also be sketched and reconstructed.

In the formulation originally developed by Criminisi, Reid, and Zisserman (2000), the
system produces an affine reconstruction, i.e., one that is only known up to a set of indepen-
dent scaling factors along each axis. A potentially more useful system can be constructed by
assuming that the camera is calibrated up to an unknown focal length, which can be recov-
ered from orthogonal (finite) vanishing directions, as we just described in Section 6.3.2. Once
this is done, the user can indicate an origin on the ground plane and another point a known
distance away. From this, points on the ground plane can be directly projected into 3D and

332 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 6.11 Four images taken with a hand-held camera registered using a 3D rotation
motion model, which can be used to estimate the focal length of the camera (Szeliski and
Shum 1997) (©) 2000 ACM.

points above the ground plane, when paired with their ground plane projections, can also be
recovered. A fully metric reconstruction of the scene then becomes possible.

Exercise 6.9 has you implement such a system and then use it to model some simple
3D scenes. Section 12.6.1 describes other, potentially multi-view, approaches to architectural
reconstruction, including an interactive piecewise-planar modeling system that uses vanishing
points to establish 3D line directions and plane normals (Sinha, Steedly, Szeliski ez al. 2008).

6.3.4 Rotational motion

When no calibration targets or known structures are available but you can rotate the camera
around its front nodal point (or, equivalently, work in a large open environment where all ob-
jects are distant), the camera can be calibrated from a set of overlapping images by assuming
that it is undergoing pure rotational motion, as shown in Figure 6.11 (Stein 1995; Hartley
1997b; Hartley, Hayman, de Agapito et al. 2000; de Agapito, Hayman, and Reid 2001; Kang
and Weiss 1999; Shum and Szeliski 2000; Frahm and Koch 2003). When a full 360° mo-
tion is used to perform this calibration, a very accurate estimate of the focal length f can be
obtained, as the accuracy in this estimate is proportional to the total number of pixels in the
resulting cylindrical panorama (Section 9.1.6) (Stein 1995; Shum and Szeliski 2000).

To use this technique, we first compute the homographies H,; ; between all overlapping
pairs of images, as explained in Equations (6.19—-6.23). Then, we use the observation, first
made in Equation (2.72) and explored in more detail in Section 9.1.3 (9.5), that each homog-
raphy is related to the inter-camera rotation RR;; through the (unknown) calibration matrices

6.3 Geometric intrinsic calibration 333

K i and K j»
H;;=K,RR;'K;' = K,R;;K;". (6.52)
The simplest way to obtain the calibration is to use the simplified form of the calibra-
tion matrix (2.59), where we assume that the pixels are square and the optical center lies at
the center of the image, i.e., K = diag(fx, fx, 1). (We number the pixel coordinates ac-

cordingly, i.e., place pixel (z,y) = (0,0) at the center of the image.) We can then rewrite
Equation (6.52) as

~ hoo ho1 fo "hoz
Ry~ K['HioKo~ | ho hi fo'hi |, (6.53)
fihoo fihor fy ' fihoo
where h;; are the elements of H 10-

Using the orthonormality properties of the rotation matrix Ry and the fact that the right
hand side of (6.53) is known only up to a scale, we obtain

hdo + By + fo 2hda = hio + ki) + fo *his (6.54)

and
hoohio + horhi1 + fy 2hozhia = 0. (6.55)
From this, we can compute estimates for f; of
_ hiy — o
 hy + hdy — hip — b3,

3 if hg +h3y # hiy +hi) (6.56)

or

12 = —ﬁ if hoohyg # —hoihy;. (6.57)
(Note that the equations originally given by Szeliski and Shum (1997) are erroneous; the
correct equations are given by Shum and Szeliski (2000).) If neither of these conditions
holds, we can also take the dot products between the first (or second) row and the third one.
Similar results can be obtained for f; as well, by analyzing the columns of H . If the focal
length is the same for both images, we can take the geometric mean of f; and f; as the
estimated focal length f = \/f1fo. When multiple estimates of f are available, e.g., from
different homographies, the median value can be used as the final estimate.

A more general (upper-triangular) estimate of K can be obtained in the case of a fixed-
parameter camera K; = K using the technique of Hartley (1997b). Observe from (6.52)
that R;; ~ KﬁleIin and R;jT ~ KTﬁ;jTKfT. Equating R;; = R;jT we obtain
K 'H;K ~ K"H,, K", from which we get

H(KK")~ (KKT)H,; . (6.58)

334 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

This provides us with some homogeneous linear constraints on the entries in A = KK”,
which is known as the dual of the image of the absolute conic (Hartley 1997b; Hartley and
Zisserman 2004). (Recall that when we estimate a homography, we can only recover it up to
an unknown scale.) Given a sufficient number of independent homography estimates H i
we can recover A (up to a scale) using either SVD or eigenvalue analysis and then recover
K through Cholesky decomposition (Appendix A.1.4). Extensions to the cases of temporally
varying calibration parameters and non-stationary cameras are discussed by Hartley, Hayman,
de Agapito et al. (2000) and de Agapito, Hayman, and Reid (2001).

The quality of the intrinsic camera parameters can be greatly increased by constructing a
full 360° panorama, since mis-estimating the focal length will result in a gap (or excessive
overlap) when the first image in the sequence is stitched to itself (Figure 9.5). The resulting
mis-alignment can be used to improve the estimate of the focal length and to re-adjust the
rotation estimates, as described in Section 9.1.4. Rotating the camera by 90° around its optic
axis and re-shooting the panorama is a good way to check for aspect ratio and skew pixel
problems, as is generating a full hemi-spherical panorama when there is sufficient texture.

Ultimately, however, the most accurate estimate of the calibration parameters (including
radial distortion) can be obtained using a full simultaneous non-linear minimization of the
intrinsic and extrinsic (rotation) parameters, as described in Section 9.2.

6.3.5 Radial distortion

When images are taken with wide-angle lenses, it is often necessary to model lens distor-
tions such as radial distortion. As discussed in Section 2.1.6, the radial distortion model
says that coordinates in the observed images are displaced away from (barrel distortion) or
towards (pincushion distortion) the image center by an amount proportional to their radial
distance (Figure 2.13a-b). The simplest radial distortion models use low-order polynomials
(c.f. Equation (2.78)),

& = 214~ + kort)
g = y(l+4rir®+ ko), (6.59)
where 2 = 22 4+ 2 and x; and k- are called the radial distortion parameters (Brown 1971;

Slama 1980)."3
A variety of techniques can be used to estimate the radial distortion parameters for a
given lens.'* One of the simplest and most useful is to take an image of a scene with a lot

13 Sometimes the relationship between = and Z is expressed the other way around, i.e., using primed (final)
coordinates on the right-hand side, x = #(1 + x172 + w27*). This is convenient if we map image pixels into
(warped) rays and then undistort the rays to obtain 3D rays in space, i.e., if we are using inverse warping.

14 Some of today’s digital cameras are starting to remove radial distortion using software in the camera itself.

6.4 Additional reading 335

of straight lines, especially lines aligned with and near the edges of the image. The radial
distortion parameters can then be adjusted until all of the lines in the image are straight,
which is commonly called the plumb-line method (Brown 1971; Kang 2001; El-Melegy and
Farag 2003). Exercise 6.10 gives some more details on how to implement such a technique.

Another approach is to use several overlapping images and to combine the estimation
of the radial distortion parameters with the image alignment process, i.e., by extending the
pipeline used for stitching in Section 9.2.1. Sawhney and Kumar (1999) use a hierarchy
of motion models (translation, affine, projective) in a coarse-to-fine strategy coupled with
a quadratic radial distortion correction term. They use direct (intensity-based) minimiza-
tion to compute the alignment. Stein (1997) uses a feature-based approach combined with
a general 3D motion model (and quadratic radial distortion), which requires more matches
than a parallax-free rotational panorama but is potentially more general. More recent ap-
proaches sometimes simultaneously compute both the unknown intrinsic parameters and the
radial distortion coefficients, which may include higher-order terms or more complex rational
or non-parametric forms (Claus and Fitzgibbon 2005; Sturm 2005; Thirthala and Pollefeys
2005; Barreto and Daniilidis 2005; Hartley and Kang 2005; Steele and Jaynes 2006; Tardif,
Sturm, Trudeau et al. 2009).

When a known calibration target is being used (Figure 6.8), the radial distortion estima-
tion can be folded into the estimation of the other intrinsic and extrinsic parameters (Zhang
2000; Hartley and Kang 2007; Tardif, Sturm, Trudeau et al. 2009). This can be viewed as
adding another stage to the general non-linear minimization pipeline shown in Figure 6.5
between the intrinsic parameter multiplication box f~ and the perspective division box fp.
(See Exercise 6.11 on more details for the case of a planar calibration target.)

Of course, as discussed in Section 2.1.6, more general models of lens distortion, such as
fisheye and non-central projection, may sometimes be required. While the parameterization
of such lenses may be more complicated (Section 2.1.6), the general approach of either us-
ing calibration rigs with known 3D positions or self-calibration through the use of multiple
overlapping images of a scene can both be used (Hartley and Kang 2007; Tardif, Sturm, and
Roy 2007). The same techniques used to calibrate for radial distortion can also be used to
reduce the amount of chromatic aberration by separately calibrating each color channel and
then warping the channels to put them back into alignment (Exercise 6.12).

6.4 Additional reading

Hartley and Zisserman (2004) provide a wonderful introduction to the topics of feature-based
alignment and optimal motion estimation, as well as an in-depth discussion of camera cali-
bration and pose estimation techniques.

336 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Techniques for robust estimation are discussed in more detail in Appendix B.3 and in
monographs and review articles on this topic (Huber 1981; Hampel, Ronchetti, Rousseeuw et
al. 1986; Rousseeuw and Leroy 1987; Black and Rangarajan 1996; Stewart 1999). The most
commonly used robust initialization technique in computer vision is RANdom SAmple Con-
sensus (RANSAC) (Fischler and Bolles 1981), which has spawned a series of more efficient
variants (Nistér 2003; Chum and Matas 2005).

The topic of registering 3D point data sets is called absolute orientation (Horn 1987) and
3D pose estimation (Lorusso, Eggert, and Fisher 1995). A variety of techniques has been
developed for simultaneously computing 3D point correspondences and their corresponding
rigid transformations (Besl and McKay 1992; Zhang 1994; Szeliski and Lavallée 1996; Gold,
Rangarajan, Lu er al. 1998; David, DeMenthon, Duraiswami et al. 2004; Li and Hartley 2007;
Enqvist, Josephson, and Kahl 2009).

Camera calibration was first studied in photogrammetry (Brown 1971; Slama 1980; Atkin-
son 1996; Kraus 1997) but it has also been widely studied in computer vision (Tsai 1987;
Gremban, Thorpe, and Kanade 1988; Champleboux, Lavallée, Szeliski er al. 1992; Zhang
2000; Grossberg and Nayar 2001). Vanishing points observed either from rectahedral cali-
bration objects or man-made architecture are often used to perform rudimentary calibration
(Caprile and Torre 1990; Becker and Bove 1995; Liebowitz and Zisserman 1998; Cipolla,
Drummond, and Robertson 1999; Antone and Teller 2002; Criminisi, Reid, and Zisserman
2000; Hartley and Zisserman 2004; Pflugfelder 2008). Performing camera calibration without
using known targets is known as self-calibration and is discussed in textbooks and surveys on
structure from motion (Faugeras, Luong, and Maybank 1992; Hartley and Zisserman 2004;
Moons, Van Gool, and Vergauwen 2010). One popular subset of such techniques uses pure
rotational motion (Stein 1995; Hartley 1997b; Hartley, Hayman, de Agapito et al. 2000; de
Agapito, Hayman, and Reid 2001; Kang and Weiss 1999; Shum and Szeliski 2000; Frahm
and Koch 2003).

6.5 Exercises

Ex 6.1: Feature-based image alignment for flip-book animations Take a set of photos of
an action scene or portrait (preferably in motor-drive—continuous shooting—mode) and
align them to make a composite or flip-book animation.

1. Extract features and feature descriptors using some of the techniques described in Sec-
tions 4.1.1-4.1.2.

2. Match your features using nearest neighbor matching with a nearest neighbor distance
ratio test (4.18).

6.5 Exercises 337

3.

4.

5.

6.

Compute an optimal 2D translation and rotation between the first image and all subse-
quent images, using least squares (Section 6.1.1) with optional RANSAC for robustness
(Section 6.1.4).

Resample all of the images onto the first image’s coordinate frame (Section 3.6.1) using
either bilinear or bicubic resampling and optionally crop them to their common area.

Convert the resulting images into an animated GIF (using software available from the
Web) or optionally implement cross-dissolves to turn them into a “slo-mo” video.

(Optional) Combine this technique with feature-based (Exercise 3.25) morphing.

Ex 6.2: Panography Create the kind of panograph discussed in Section 6.1.2 and com-
monly found on the Web.

1.

2.

Take a series of interesting overlapping photos.

Use the feature detector, descriptor, and matcher developed in Exercises 4.1-4.4 (or
existing software) to match features among the images.

Turn each connected component of matching features into a track, i.e., assign a unique
index ¢ to each track, discarding any tracks that are inconsistent (contain two different
features in the same image).

Compute a global translation for each image using Equation (6.12).

Since your matches probably contain errors, turn the above least square metric into a
robust metric (6.25) and re-solve your system using iteratively reweighted least squares.

Compute the size of the resulting composite canvas and resample each image into its
final position on the canvas. (Keeping track of bounding boxes will make this more
efficient.)

. Average all of the images, or choose some kind of ordering and implement translucent

over compositing (3.8).

(Optional) Extend your parametric motion model to include rotations and scale, i.e.,
the similarity transform given in Table 6.1. Discuss how you could handle the case of
translations and rotations only (no scale).

(Optional) Write a simple tool to let the user adjust the ordering and opacity, and add
or remove images.

338

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

10. (Optional) Write down a different least squares problem that involves pairwise match-

Ex 6.3: 2D rigid/Euclidean matching Several alternative approaches are given in Section 6.1.3

ing of images. Discuss why this might be better or worse than the global matching
formula given in (6.12).

for estimating a 2D rigid (Euclidean) alignment.

1.

Implement the various alternatives and compare their accuracy on synthetic data, i.e.,
random 2D point clouds with noisy feature positions.

One approach is to estimate the translations from the centroids and then estimate ro-
tation in polar coordinates. Do you need to weight the angles obtained from a polar
decomposition in some way to get the statistically correct estimate?

. How can you modify your techniques to take into account either scalar (6.10) or full

two-dimensional point covariance weightings (6.11)? Do all of the previously devel-
oped “shortcuts” still work or does full weighting require iterative optimization?

Ex 6.4: 2D match move/augmented reality Replace a picture in a magazine or a book
with a different image or video.

1.

2.

With a webcam, take a picture of a magazine or book page.

Outline a figure or picture on the page with a rectangle, i.e., draw over the four sides as
they appear in the image.

Match features in this area with each new image frame.

Replace the original image with an “advertising” insert, warping the new image with
the appropriate homography.

Try your approach on a clip from a sporting event (e.g., indoor or outdoor soccer) to
implement a billboard replacement.

Ex 6.5: 3D joystick Track a Rubik’s cube to implement a 3D joystick/mouse control.

1.

2.

3.

4.

Get out an old Rubik’s cube (or get one from your parents).
Write a program to detect the center of each colored square.
Group these centers into lines and then find the vanishing points for each face.

Estimate the rotation angle and focal length from the vanishing points.

6.5 Exercises 339

5. Estimate the full 3D pose (including translation) by finding one or more 3 x 3 grids and

recovering the plane’s full equation from this known homography using the technique
developed by Zhang (2000).

Alternatively, since you already know the rotation, simply estimate the unknown trans-
lation from the known 3D corner points on the cube and their measured 2D locations
using either linear or non-linear least squares.

7. Use the 3D rotation and position to control a VRML or 3D game viewer.

Ex 6.6: Rotation-based calibration Take an outdoor or indoor sequence from a rotating

camera with very little parallax and use it to calibrate the focal length of your camera using

the techniques described in Section 6.3.4 or Sections 9.1.3-9.2.1.

1.

Take out any radial distortion in the images using one of the techniques from Exer-
cises 6.10-6.11 or using parameters supplied for a given camera by your instructor.

Detect and match feature points across neighboring frames and chain them into feature
tracks.

Compute homographies between overlapping frames and use Equations (6.56-6.57) to
get an estimate of the focal length.

Compute a full 360° panorama and update your focal length estimate to close the gap
(Section 9.1.4).

. (Optional) Perform a complete bundle adjustment in the rotation matrices and focal

length to obtain the highest quality estimate (Section 9.2.1).

Ex 6.7: Target-based calibration Use a three-dimensional target to calibrate your camera.

1.

Construct a three-dimensional calibration pattern with known 3D locations. It is not
easy to get high accuracy unless you use a machine shop, but you can get close using
heavy plywood and printed patterns.

Find the corners, e.g, using a line finder and intersecting the lines.

Implement one of the iterative calibration and pose estimation algorithms described
in Tsai (1987); Bogart (1991); Gleicher and Witkin (1992) or the system described in
Section 6.2.2.

Take many pictures at different distances and orientations relative to the calibration
target and report on both your re-projection errors and accuracy. (To do the latter, you
may need to use simulated data.)

340 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Ex 6.8: Calibration accuracy Compare the three calibration techniques (plane-based, rotation-
based, and 3D-target-based).

One approach is to have a different student implement each one and to compare the results.
Another approach is to use synthetic data, potentially re-using the software you developed
for Exercise 2.3. The advantage of using synthetic data is that you know the ground truth
for the calibration and pose parameters, you can easily run lots of experiments, and you can
synthetically vary the noise in your measurements.

Here are some possible guidelines for constructing your test sets:

1. Assume a medium-wide focal length (say, 50° field of view).

2. For the plane-based technique, generate a 2D grid target and project it at different
inclinations.

3. For a 3D target, create an inner cube corner and position it so that it fills most of field
of view.

4. For the rotation technique, scatter points uniformly on a sphere until you get a similar
number of points as for other techniques.

Before comparing your techniques, predict which one will be the most accurate (normalize
your results by the square root of the number of points used).

Add varying amounts of noise to your measurements and describe the noise sensitivity of
your various techniques.

Ex 6.9: Single view metrology Implement a system to measure dimensions and reconstruct
a 3D model from a single image of a man-made scene using visible vanishing directions (Sec-
tion 6.3.3) (Criminisi, Reid, and Zisserman 2000).

1. Find the three orthogonal vanishing points from parallel lines and use them to establish
the three coordinate axes (rotation matrix R of the camera relative to the scene). If
two of the vanishing points are finite (not at infinity), use them to compute the focal
length, assuming a known optical center. Otherwise, find some other way to calibrate
your camera; you could use some of the techniques described by Schaffalitzky and
Zisserman (2000).

2. Click on a ground plane point to establish your origin and click on a point a known
distance away to establish the scene scale. This lets you compute the translation ¢
between the camera and the scene. As an alternative, click on a pair of points, one
on the ground plane and one above it, and use the known height to establish the scene
scale.

6.5 Exercises 341

3. Write a user interface that lets you click on ground plane points to recover their 3D
locations. (Hint: you already know the camera matrix, so knowledge of a point’s z
value is sufficient to recover its 3D location.) Click on pairs of points (one on the
ground plane, one above it) to measure vertical heights.

4. Extend your system to let you draw quadrilaterals in the scene that correspond to axis-
aligned rectangles in the world, using some of the techniques described by Sinha,
Steedly, Szeliski et al. (2008). Export your 3D rectangles to a VRML or PLY" file.

5. (Optional) Warp the pixels enclosed by the quadrilateral using the correct homography
to produce a texture map for each planar polygon.

Ex 6.10: Radial distortion with plumb lines Implement a plumb-line algorithm to deter-
mine the radial distortion parameters.

1. Take some images of scenes with lots of straight lines, e.g., hallways in your home or
office, and try to get some of the lines as close to the edges of the image as possible.

2. Extract the edges and link them into curves, as described in Section 4.2.2 and Exer-
cise 4.8.

3. Fit quadratic or elliptic curves to the linked edges using a generalization of the suc-
cessive line approximation algorithm described in Section 4.3.1 and Exercise 4.11 and
keep the curves that fit this form well.

4. For each curved segment, fit a straight line and minimize the perpendicular distance
between the curve and the line while adjusting the radial distortion parameters.

5. Alternate between re-fitting the straight line and adjusting the radial distortion param-
eters until convergence.

Ex 6.11: Radial distortion with a calibration target Use a grid calibration target to de-
termine the radial distortion parameters.

1. Print out a planar calibration target, mount it on a stiff board, and get it to fill your field
of view.

2. Detect the squares, lines, or dots in your calibration target.

3. Estimate the homography mapping the target to the camera from the central portion of
the image that does not have any radial distortion.

15 hitp://meshlab.sf.net.

http://meshlab.sf.net

342 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

4. Predict the positions of the remaining targets and use the differences between the ob-
served and predicted positions to estimate the radial distortion.

5. (Optional) Fit a general spline model (for severe distortion) instead of the quartic dis-
tortion model.

6. (Optional) Extend your technique to calibrate a fisheye lens.

Ex 6.12: Chromatic aberration Use the radial distortion estimates for each color channel
computed in the previous exercise to clean up wide-angle lens images by warping all of the
channels into alignment. (Optional) Straighten out the images at the same time.

Can you think of any reasons why this warping strategy may not always work?

7.1
7.2

7.3

7.4

1.5

7.6
1.7

Chapter 7

Structure from motion

Triangulation 345
Two-frame structure frommotion. 347
7.2.1 Projective (uncalibrated) reconstruction 353
7.2.2 Self-calibration 355
7.2.3 Application: View morphing 357
Factorization 357
7.3.1 Perspective and projective factorization 360
7.3.2 Application: Sparse 3D model extraction 362
Bundle adjustment L. 363
7.4.1 Exploiting sparsity 364
7.4.2 Application: Match move and augmented reality 368
7.4.3 Uncertainty and ambiguities 370
7.4.4 Application: Reconstruction from Internet photos 371
Constrained structure and motion 374
7.5.1 Line-based techniques 374
7.5.2 Plane-based techniques 376
Additional reading Lo 377
Exercises 377

344 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (© (d

Figure 7.1 Structure from motion systems: (a—d) orthographic factorization (Tomasi and
Kanade 1992) © 1992 Springer; (e—f) line matching (Schmid and Zisserman 1997) © 1997
IEEE; (g-k) incremental structure from motion (Snavely, Seitz, and Szeliski 2006); (1) 3D
reconstruction of Trafalgar Square (Snavely, Seitz, and Szeliski 2006); (m) 3D reconstruction
of the Great Wall of China (Snavely, Seitz, and Szeliski 2006); (n) 3D reconstruction of the
Old Town Square, Prague (Snavely, Seitz, and Szeliski 2006) (©) 2006 ACM.

7.1 Triangulation 345

In the previous chapter, we saw how 2D and 3D point sets could be aligned and how such
alignments could be used to estimate both a camera’s pose and its internal calibration parame-
ters. In this chapter, we look at the converse problem of estimating the locations of 3D points
from multiple images given only a sparse set of correspondences between image features.
While this process often involves simultaneously estimating both 3D geometry (structure)
and camera pose (motion), it is commonly known as structure from motion (Ullman 1979).

The topics of projective geometry and structure from motion are extremely rich and
some excellent textbooks and surveys have been written on them (Faugeras and Luong 2001;
Hartley and Zisserman 2004; Moons, Van Gool, and Vergauwen 2010). This chapter skips
over a lot of the richer material available in these books, such as the trifocal tensor and al-
gebraic techniques for full self-calibration, and concentrates instead on the basics that we
have found useful in large-scale, image-based reconstruction problems (Snavely, Seitz, and
Szeliski 2006).

We begin with a brief discussion of triangulation (Section 7.1), which is the problem of
estimating a point’s 3D location when it is seen from multiple cameras. Next, we look at the
two-frame structure from motion problem (Section 7.2), which involves the determination of
the epipolar geometry between two cameras and which can also be used to recover certain
information about the camera intrinsics using self-calibration (Section 7.2.2). Section 7.3
looks at factorization approaches to simultaneously estimating structure and motion from
large numbers of point tracks using orthographic approximations to the projection model.
We then develop a more general and useful approach to structure from motion, namely the
simultaneous bundle adjustment of all the camera and 3D structure parameters (Section 7.4).
We also look at special cases that arise when there are higher-level structures, such as lines
and planes, in the scene (Section 7.5).

7.1 Triangulation

The problem of determining a point’s 3D position from a set of corresponding image locations
and known camera positions is known as triangulation. This problem is the converse of the
pose estimation problem we studied in Section 6.2.

One of the simplest ways to solve this problem is to find the 3D point p that lies closest to
all of the 3D rays corresponding to the 2D matching feature locations {x; } observed by cam-
eras {P; = K [R;|t;]}, where t; = —R;c, and ¢, is the jth camera center (2.55-2.56).
As you can see in Figure 7.2, these rays originate at ¢; in a direction ¥; = N(Rj_lKj_la:j).
The nearest point to p on this ray, which we denote as qa;, minimizes the distance

llej +djo; —pl1%, (7.1)

346 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 7.2 3D point triangulation by finding the point p that lies nearest to all of the optical
rays c; + d;0;.

which has a minimum at d; = 9; - (p — ¢;). Hence,

q; = c; +(9;9)(p—¢;) = ¢; + (P~ &), (7.2)
in the notation of Equation (2.29), and the squared distance between p and g is

i = I = 8;9)(p — e))II = ll(p —) 1. (7.3)
The optimal value for p, which lies closest to all of the rays, can be computed as a regular
least squares problem by summing over all the r? and finding the optimal value of p,

-1

p=|> (I-0;0]) > (T — 9])e; | - (7.4)

An alternative formulation, which is more statistically optimal and which can produce
significantly better estimates if some of the cameras are closer to the 3D point than others, is
g y p
to minimize the residual in the measurement equations
. p(()JO)X-i-p)Y+p(])Z+p0 W 7.5)
;= .
P56 X + P Y + 05 Z + pi W
Y - Pio X +pitY + 0l Z +piy W 7.6)
i = .
P56 X + DY + 05 Z + W

()

where (z;,y;) are the measured 2D feature locations and {p . .. p%)} are the known entries
in camera matrix P; (Sutherland 1974).
As with Equations (6.21, 6.33, and 6.34), this set of non-linear equations can be converted

into a linear least squares problem by multiplying both sides of the denominator. Note that if

7.2 Two-frame structure from motion 347

we use homogeneous coordinates p = (X, Y, Z, W), the resulting set of equations is homo-
geneous and is best solved as a singular value decomposition (SVD) or eigenvalue problem
(looking for the smallest singular vector or eigenvector). If we set W = 1, we can use regular
linear least squares, but the resulting system may be singular or poorly conditioned, i.e., if all
of the viewing rays are parallel, as occurs for points far away from the camera.

For this reason, it is generally preferable to parameterize 3D points using homogeneous
coordinates, especially if we know that there are likely to be points at greatly varying dis-
tances from the cameras. Of course, minimizing the set of observations (7.5-7.6) using non-
linear least squares, as described in (6.14 and 6.23), is preferable to using linear least squares,
regardless of the representation chosen.

For the case of two observations, it turns out that the location of the point p that exactly
minimizes the true reprojection error (7.5-7.6) can be computed using the solution of degree
six equations (Hartley and Sturm 1997). Another problem to watch out for with triangulation
is the issue of chirality, i.e., ensuring that the reconstructed points lie in front of all the
cameras (Hartley 1998). While this cannot always be guaranteed, a useful heuristic is to take
the points that lie behind the cameras because their rays are diverging (imagine Figure 7.2
where the rays were pointing away from each other) and to place them on the plane at infinity
by setting their W values to 0.

7.2 Two-frame structure from motion

So far in our study of 3D reconstruction, we have always assumed that either the 3D point
positions or the 3D camera poses are known in advance. In this section, we take our first look
at structure from motion, which is the simultaneous recovery of 3D structure and pose from
image correspondences.

Consider Figure 7.3, which shows a 3D point p being viewed from two cameras whose
relative position can be encoded by a rotation R and a translation ¢. Since we do not know
anything about the camera positions, without loss of generality, we can set the first camera at
the origin ¢y = 0 and at a canonical orientation Ry = I.

Now notice that the observed location of point p in the first image, p, = doZo is mapped
into the second image by the transformation

dlﬁll = pl = Rpo —+ t= R(do.’io) + t, (77)

where &; = K ;113]‘ are the (local) ray direction vectors. Taking the cross product of both
sides with ¢ in order to annihilate it on the right hand side yields'

di[t]«Z1 = do[t]x RZo. (7.8)

! The cross-product operator [] was introduced in (2.32).

348 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

epipolar plane

epipolar
lines

(R.H)

Figure 7.3 Epipolar geometry: The vectors t = ¢; — ¢y, p — ¢ and p — ¢; are co-planar
and define the basic epipolar constraint expressed in terms of the pixel measurements &, and
xIy.

Taking the dot product of both sides with &, yields
doz] ([t]x R)&o = d1&] [t]x &1 = 0, (7.9)

since the right hand side is a triple product with two identical entries. (Another way to say
this is that the cross product matrix [¢]y is skew symmetric and returns 0 when pre- and
post-multiplied by the same vector.)

We therefore arrive at the basic epipolar constraint

& E&y =0, (7.10)

where
E=[t|]xR (7.11)

is called the essential matrix (Longuet-Higgins 1981).

An alternative way to derive the epipolar constraint is to notice that in order for the cam-
eras to be oriented so that the rays & and & intersect in 3D at point p, the vectors connecting
the two camera centers ¢; — ¢y = —Rl_lt and the rays corresponding to pixels g and x,
namely R;lﬁcj, must be co-planar. This requires that the triple product

(£0, R™'&1, —R™'t) = (Rio, &1, —t) = & - (t x Ro) = & ([t]« R)&o = 0. (7.12)

Notice that the essential matrix F2 maps a point & in image O into a line I} = Ex
in image 1, since i{ll = 0 (Figure 7.3). All such lines must pass through the second
epipole ey, which is therefore defined as the left singular vector of E with a 0 singular value,
or, equivalently, the projection of the vector ¢ into image 1. The dual (transpose) of these

7.2 Two-frame structure from motion 349

relationships gives us the epipolar line in the first image as ly = E” &, and ey as the zero-
value right singular vector of E.

Given this fundamental relationship (7.10), how can we use it to recover the camera
motion encoded in the essential matrix E? If we have N corresponding measurements
{(xi0, x;1)}, we can form N homogeneous equations in the nine elements of E = {eq . .. €22},

TioZTiieoo + YioTireor + Tiep2 +
TioYit€oo + Yio¥i€ir + Y€z + (7.13)
Tioe20 + Yioe21 + ez = 0
where @;; = (2,5, ¥i;, 1). This can be written more compactly as
x| RE=Z,E=2;-f =0, (7.14)

where ® indicates an element-wise multiplication and summation of matrix elements, and z;
and f are the rasterized (vector) forms of the Z; = &;; :ic% and E matrices.” Given N > 8
such equations, we can compute an estimate (up to scale) for the entries in E using an SVD.

In the presence of noisy measurements, how close is this estimate to being statistically
optimal? If you look at the entries in (7.13), you can see that some entries are the products
of image measurements such as z;0y;1 and others are direct image measurements (or even
the identity). If the measurements have comparable noise, the terms that are products of
measurements have their noise amplified by the other element in the product, which can lead
to very poor scaling, e.g., an inordinately large influence of points with large coordinates (far
away from the image center).

In order to counteract this trend, Hartley (1997a) suggests that the point coordinates
should be translated and scaled so that their centroid lies at the origin and their variance
is unity, i.e.,

T = s(x;— pa) (7.15)
i = s(xi—py) (7.16)

suchthat Y, %; =, 9; =0and Y, &2 + >, §? = 2n, where n is the number of points.?
Once the essential matrix E has been computed from the transformed coordinates
{(Zi0,Zs1)}, where &;; = T ;&;;, the original essential matrix F can be recovered as

E =T,ET,. (7.17)

2 We use f instead of e to denote the rasterized form of E to avoid confusion with the epipoles e;.

3 More precisely, Hartley (1997a) suggests scaling the points “so that the average distance from the origin is equal
to v/2” but the heuristic of unit variance is faster to compute (does not require per-point square roots) and should
yield comparable improvements.

350 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

In his paper, Hartley (1997a) compares the improvement due to his re-normalization strategy
to alternative distance measures proposed by others such as Zhang (1998a,b) and concludes
that his simple re-normalization in most cases is as effective as (or better than) alternative
techniques. Torr and Fitzgibbon (2004) recommend a variant on this algorithm where the
norm of the upper 2 x 2 sub-matrix of E is set to 1 and show that it has even better stability
with respect to 2D coordinate transformations.

Once an estimate for the essential matrix F has been recovered, the direction of the trans-
lation vector ¢ can be estimated. Note that the absolute distance between the two cameras can
never be recovered from pure image measurements alone, regardless of how many cameras
or points are used. Knowledge about absolute camera and point positions or distances, of-
ten called ground control points in photogrammetry, is always required to establish the final
scale, position, and orientation.

To estimate this direction £, observe that under ideal noise-free conditions, the essential
matrix F is singular, i.e., ' E = 0. This singularity shows up as a singular value of 0 when
an SVD of F is performed,

E=[yR=UsV" = [wo wy & 1 o7 (7.18)

When E is computed from noisy measurements, the singular vector associated with the small-
est singular value gives us . (The other two singular values should be similar but are not, in
general, equal to 1 because FE is only computed up to an unknown scale.)

Because F is rank-deficient, it turns out that we actually only need seven correspondences
of the form of Equation (7.14) instead of eight to estimate this matrix (Hartley 1994a; Torr and
Murray 1997; Hartley and Zisserman 2004). (The advantage of using fewer correspondences
inside a RANSAC robust fitting stage is that fewer random samples need to be generated.)
From this set of seven homogeneous equations (which we can stack into a 7 x 9 matrix for
SVD analysis), we can find two independent vectors, say f, and f, such that z; - f; = 0.
These two vectors can be converted back into 3 x 3 matrices E(and E, which span the
solution space for

E=aFEy+ (1-a)E;. (7.19)

To find the correct value of «, we observe that F has a zero determinant, since it is rank
deficient, and hence
det |aEo + (1 — a)E;| = 0. (7.20)

This gives us a cubic equation in «, which has either one or three solutions (roots). Substitut-
ing these values into (7.19) to obtain E, we can test this essential matrix against other unused
feature correspondences to select the correct one.

7.2 Two-frame structure from motion 351

Once # has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [ﬂ % (2.32) projects a vector onto a set of orthogonal
basis vectors that include £, zeros out the £ component, and rotates the other two by 90°,

1 0 -1 sOT
[{]x = SZRgy. ST = [80 8 f} 1 1 0 sT |, .21
0 1] §

where £ = sy x s;. From Equations (7.18 and 7.21), we get
E=[{]xR=SZRyS"R=UZV", (7.22)

from which we can conclude that S = U. Recall that for a noise-free essential matrix,
(3 = Z), and hence
Ry UTR=VT (7.23)

and
R=UR}.V". (7.24)

Unfortunately, we only know both E and £ up to a sign. Furthermore, the matrices U and V'
are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R=+4URL,,.V" (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction +# and select the
combination for which the largest number of points is seen in front of both cameras.*

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.’
Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

352 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 7.4 Pure translational camera motion results in visual motion where all the points
move towards (or away from) a common focus of expansion (FOE) e. They therefore satisfy
the triple product condition (g, z1,e) = e - (xg X 1) = 0.

while enforcing the rank two constraint in E (7.19-7.20) and a five-point algorithm that
requires finding the roots of a 10th degree polynomial (Nistér 2004). Since such algorithms
use fewer points to compute their estimates, they are less sensitive to outliers when used as
part of a random sampling (RANSAC) strategy.

Pure translation (known rotation)

In the case where we know the rotation, we can pre-rotate the points in the second image to
match the viewing direction of the first. The resulting set of 3D points all move towards (or
away from) the focus of expansion (FOE), as shown in Figure 7.4.° The resulting essential
matrix F is (in the noise-free case) skew symmetric and so can be estimated more directly by
setting e;; = —e;; and e;; = 0 in (7.13). Two points with non-zero parallax now suffice to
estimate the FOE.
A more direct derivation of the FOE estimate can be obtained by minimizing the triple
product
Z(ﬂ?io, zi1,e)’ = Z((-’L’z’o X xi1) - €)?, (7.26)
i i

which is equivalent to finding the null space for the set of equations
(Yio — yir)eo + (Ti1 — wio)er + (Tioyi1r — YioTi1)ez = 0. (1.27)

Note that, as in the eight-point algorithm, it is advisable to normalize the 2D points to have
unit variance before computing this estimate.

In situations where a large number of points at infinity are available, e.g., when shooting
outdoor scenes or when the camera motion is small compared to distant objects, this suggests
an alternative RANSAC strategy for estimating the camera motion. First, pick a pair of
points to estimate a rotation, hoping that both of the points lie at infinity (very far from the

6 Fans of Star Trek and Star Wars will recognize this as the “jump to hyperdrive” visual effect.

7.2 Two-frame structure from motion 353

camera). Then, compute the FOE and check whether the residual error is small (indicating
agreement with this rotation hypothesis) and whether the motions towards or away from the
epipole (FOE) are all in the same direction (ignoring very small motions, which may be
noise-contaminated).

Pure rotation

The case of pure rotation results in a degenerate estimate of the essential matrix £ and of
the translation direction £. Consider first the case of the rotation matrix being known. The
estimates for the FOE will be degenerate, since x;9 =~ x;1, and hence (7.27), is degenerate.
A similar argument shows that the equations for the essential matrix (7.13) are also rank-
deficient.

This suggests that it might be prudent before computing a full essential matrix to first
compute a rotation estimate R using (6.32), potentially with just a small number of points,
and then compute the residuals after rotating the points before proceeding with a full
computation.

7.2.1 Projective (uncalibrated) reconstruction

In many cases, such as when trying to build a 3D model from Internet or legacy photos taken
by unknown cameras without any EXIF tags, we do not know ahead of time the intrinsic
calibration parameters associated with the input images. In such situations, we can still esti-
mate a two-frame reconstruction, although the true metric structure may not be available, e.g.,
orthogonal lines or planes in the world may not end up being reconstructed as orthogonal.

Consider the derivations we used to estimate the essential matrix E (7.10-7.12). In the
uncalibrated case, we do not know the calibration matrices K ;, so we cannot use the normal-
ized ray directions ; = K ;le. Instead, we have access only to the image coordinates x,
and so the essential matrix (7.10) becomes

&l Bz, =2l K{TEK'ag = 2T Fag = 0, (7.28)
where
F=K;TEK;'=[e] H (7.29)

is called the fundamental matrix (Faugeras 1992; Hartley, Gupta, and Chang 1992; Hartley
and Zisserman 2004).
Like the essential matrix, the fundamental matrix is (in principle) rank two,

T
(s})

F=le] H = USVT = | wy u e o1 ol |. (7.30)
T

354 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Its smallest left singular vector indicates the epipole e; in the image 1 and its smallest right
singular vector is ey (Figure 7.3). The homography H in (7.29), which in principle should
equal

H=K;"RK;", (7.31)

cannot be uniquely recovered from F', since any homography of the form H-f + ev”
results in the same F' matrix. (Note that [e] annihilates any multiple of e.)

Any one of these valid homographies H maps some plane in the scene from one image
to the other. It is not possible to tell in advance which one it is without either selecting four
or more co-planar correspondences to compute H as part of the F' estimation process (in a
manner analogous to guessing a rotation for E) or mapping all points in one image through
H and seeing which ones line up with their corresponding locations in the other.”

In order to create a projective reconstruction of the scene, we can pick any valid homog-
raphy H that satisfies Equation (7.29). For example, following a technique analogous to
Equations (7.18-7.24), we get

F=le],H=SZRy.S"TH=UZV" (7.32)

and hence

H=URL.2V7, (7.33)

where 3 is the singular value matrix with the smallest value replaced by a reasonable alter-
native (say, the middle value).® We can then form a pair of camera matrices

Py =[I|0] and P, =[Hle], (7.34)

from which a projective reconstruction of the scene can be computed using triangulation
(Section 7.1).

While the projective reconstruction may not be useful in practice, it can often be upgraded
to an affine or metric reconstruction, as detailed below. Even without this step, however,
the fundamental matrix F' can be very useful in finding additional correspondences, as they
must all lie on corresponding epipolar lines, i.e., any feature xy in image 0 must have its
correspondence lying on the associated epipolar line Iy = F'xg in image 1, assuming that the
point motions are due to a rigid transformation.

7 This process is sometimes referred to as plane plus parallax (Section 2.1.5) (Kumar, Anandan, and Hanna 1994;
Sawhney 1994).

8 Hartley and Zisserman (2004, p. 237) recommend using H= [e] x F' (Luong and Viéville 1996), which places
the camera on the plane at infinity.

7.2 Two-frame structure from motion 355

7.2.2 Self-calibration

The results of structure from motion computation are much more useful (and intelligible) if
a metric reconstruction is obtained, i.e., one in which parallel lines are parallel, orthogonal
walls are at right angles, and the reconstructed model is a scaled version of reality. Over
the years, a large number of self-calibration (or auto-calibration) techniques have been de-
veloped for converting a projective reconstruction into a metric one, which is equivalent to
recovering the unknown calibration matrices K ; associated with each image (Hartley and
Zisserman 2004; Moons, Van Gool, and Vergauwen 2010).

In situations where certain additional information is known about the scene, different
methods may be employed. For example, if there are parallel lines in the scene (usually,
having several lines converge on the same vanishing point is good evidence), three or more
vanishing points, which are the images of points at infinity, can be used to establish the ho-
mography for the plane at infinity, from which focal lengths and rotations can be recovered.
If two or more finite orthogonal vanishing points have been observed, the single-image cali-
bration method based on vanishing points (Section 6.3.2) can be used instead.

In the absence of such external information, it is not possible to recover a fully parameter-
ized independent calibration matrix K ; for each image from correspondences alone. To see
this, consider the set of all camera matrices P; = K ;[R,|t;] projecting world coordinates
p; = (X;,Y;, Z;,W;) into screen coordinates x;; ~ P;p;. Now consider transforming the
3D scene {p,} through an arbitrary 4 x 4 projective transformation H, yielding a new model
consisting of points p; = H p,. Post-multiplying each P; matrix by H - still produces the
same screen coordinates and a new set calibration matrices can be computed by applying RQ
decomposition to the new camera matrix P’; = ij{ -

For this reason, all self-calibration methods assume some restricted form of the calibration
matrix, either by setting or equating some of their elements or by assuming that they do not
vary over time. While most of the techniques discussed by Hartley and Zisserman (2004);
Moons, Van Gool, and Vergauwen (2010) require three or more frames, in this section we
present a simple technique that can recover the focal lengths (fo, f1) of both images from the
fundamental matrix F' in a two-frame reconstruction (Hartley and Zisserman 2004, p. 456).

To accomplish this, we assume that the camera has zero skew, a known aspect ratio (usu-
ally set to 1), and a known optical center, as in Equation (2.59). How reasonable is this
assumption in practice? The answer, as with many questions, is “it depends”.

If absolute metric accuracy is required, as in photogrammetry applications, it is imperative
to pre-calibrate the cameras using one of the techniques from Section 6.3 and to use ground
control points to pin down the reconstruction. If instead, we simply wish to reconstruct the
world for visualization or image-based rendering applications, as in the Photo Tourism system
of Snavely, Seitz, and Szeliski (2006), this assumption is quite reasonable in practice.

356 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Most cameras today have square pixels and an optical center near the middle of the image,
and are much more likely to deviate from a simple camera model due to radial distortion
(Section 6.3.5), which should be compensated for whenever possible. The biggest problems
occur when images have been cropped off-center, in which case the optical center will no
longer be in the middle, or when perspective pictures have been taken of a different picture,
in which case a general camera matrix becomes necessary.’

Given these caveats, the two-frame focal length estimation algorithm based on the Kruppa
equations developed by Hartley and Zisserman (2004, p. 456) proceeds as follows. Take the
left and right singular vectors {wug, w1, vg, v1} of the fundamental matrix F' (7.30) and their
associated singular values {0, 01) and form the following set of equations:

uF{Doul _ UgDoul _ UgDouO (7 35)
o2vlDivg opo1viDivy oivIDyvy’ '
where the two matrices
I7
D; = K;K| =diag(f], f},1) = 2 (7.36)

1

encode the unknown focal lengths. For simplicity, let us rewrite each of the numerators and
denominators in (7.35) as

eijo(fg) = uiTDouj = Q45 + bijfg, (737)
eijl(flg) = UiO'j’U;-TDl’Uj = Cij —+ dzyflz (738)

Notice that each of these is affine (linear plus constant) in either f2 or fZ. Hence, we
can cross-multiply these equations to obtain quadratic equations in f?, which can readily
be solved. (See also the work by Bougnoux (1998) for some alternative formulations.)

An alternative solution technique is to observe that we have a set of three equations related
by an unknown scalar A, i.e.,

eijo(f3) = Aeij1 (f7) (7.39)

(Richard Hartley, personal communication, July 2009). These can readily be solved to yield
(f&,\f?,) and hence (fo, f1)-

How well does this approach work in practice? There are certain degenerate configura-
tions, such as when there is no rotation or when the optical axes intersect, when it does not
work at all. (In such a situation, you can vary the focal lengths of the cameras and obtain

9 In Photo Tourism, our system registered photographs of an information sign outside Notre Dame with real
pictures of the cathedral.

7.3 Factorization 357

a deeper or shallower reconstruction, which is an example of a bas-relief ambiguity (Sec-
tion 7.4.3).) Hartley and Zisserman (2004) recommend using techniques based on three or
more frames. However, if you find two images for which the estimates of (fZ, \fZ,\) are
well conditioned, they can be used to initialize a more complete bundle adjustment of all
the parameters (Section 7.4). An alternative, which is often used in systems such as Photo
Tourism, is to use camera EXIF tags or generic default values to initialize focal length esti-
mates and refine them as part of bundle adjustment.

7.2.3 Application: View morphing

An interesting application of basic two-frame structure from motion is view morphing (also
known as view interpolation, see Section 13.1), which can be used to generate a smooth 3D
animation from one view of a 3D scene to another (Chen and Williams 1993; Seitz and Dyer
1996).

To create such a transition, you must first smoothly interpolate the camera matrices, i.e.,
the camera positions, orientations, and focal lengths. While simple linear interpolation can be
used (representing rotations as quaternions (Section 2.1.4)), a more pleasing effect is obtained
by easing in and easing out the camera parameters, e.g., using a raised cosine, as well as
moving the camera along a more circular trajectory (Snavely, Seitz, and Szeliski 2000).

To generate in-between frames, either a full set of 3D correspondences needs to be es-
tablished (Section 11.3) or 3D models (proxies) must be created for each reference view.
Section 13.1 describes several widely used approaches to this problem. One of the simplest
is to just triangulate the set of matched feature points in each image, e.g., using Delaunay
triangulation. As the 3D points are re-projected into their intermediate views, pixels can be
mapped from their original source images to their new views using affine or projective map-
ping (Szeliski and Shum 1997). The final image is then composited using a linear blend of
the two reference images, as with usual morphing (Section 3.6.3).

7.3 Factorization

When processing video sequences, we often get extended feature tracks (Section 4.1.4) from
which it is possible to recover the structure and motion using a process called factorization.
Consider the tracks generated by a rotating ping pong ball, which has been marked with
dots to make its shape and motion more discernable (Figure 7.5). We can readily see from
the shape of the tracks that the moving object must be a sphere, but how can we infer this
mathematically?

It turns out that, under orthography or related models we discuss below, the shape and
motion can be recovered simultaneously using a singular value decomposition (Tomasi and

358 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b) (©

Figure 7.5 3D reconstruction of a rotating ping pong ball using factorization (Tomasi and
Kanade 1992) (©) 1992 Springer: (a) sample image with tracked features overlaid; (b) sub-
sampled feature motion stream; (c) two views of the reconstructed 3D model.

Kanade 1992). Consider the orthographic and weak perspective projection models introduced
in Equations (2.47-2.49). Since the last row is always [0 0 0 1], there is no perspective division
and we can write

zj; = P;p,, (7.40)

where x;; is the location of the ith point in the jth frame, 15j is the upper 2 x 4 portion of
the projection matrix P;, and p; = (X;,Y;, Z;, 1) is the augmented 3D point position.'”

Let us assume (for now) that every point ¢ is visible in every frame j. We can take the
centroid (average) of the projected point locations x ;; in frame j,

o S
=5 D wi =Py > pi=Pje (7.41)

where ¢ = (X,Y, Z, 1) is the augmented 3D centroid of the point cloud.

Since world coordinate frames in structure from motion are always arbitrary, i.e., we
cannot recover true 3D locations without ground control points (known measurements), we
can place the origin of the world at the centroid of the points, i.e, X =Y = Z = 0, so that
¢=(0,0,0,1). We see from this that the centroid of the 2D points in each frame &, directly
gives us the last element of P;.

Let £;; = x;; — Z; be the 2D point locations after their image centroid has been sub-
tracted. We can now write

Zj; = M;p;, (7.42)

10 In this section, we index the 2D point positions as a;; instead of @;;, since this is the convention adopted by
factorization papers (Tomasi and Kanade 1992) and is consistent with the factorization given in (7.43).

7.3 Factorization 359

where M ; is the upper 2 x 3 portion of the projection matrix P; and p; = (X;,Y;, Z;). We
can concatenate all of these measurement equations into one large matrix

i1 o Xy o TN M,
X=|a@y - & - @y | =| M, [pl p, - py | =DNIS. (143)
| Zm1 o Ty TMN | My |

X is called the measurement matrix and M and (5’ are the motion) and structure matrices,
respectively (Tomasi and Kanade 1992).

Because the motion matrix M is 2M x 3 and the structure matrix S is 3 x N ,an SVD
applied to X has only three non-zero singular values. In the case where the measurements in
X are noisy, SVD returns the rank-three factorization of X that is the closest to X in a least
squares sense (Tomasi and Kanade 1992; Golub and Van Loan 1996; Hartley and Zisserman
2004).

It would be nice if the SVD of X = USV7T directly returned the matrices M and S,
but it does not. Instead, we can write the relationship

X =vuzvT = [UuQ)Q '=Vv’] (7.44)

andset M =UQand S = Q'xvT.l

How can we recover the values of the 3 x 3 matrix Q? This depends on the motion model
being used. In the case of orthographic projection (2.47), the entries in M ; are the first two
rows of rotation matrices I2;, so we have

T
mjo-myo = u;QQ" u; =1,
T, T
mjo -mjl = ’LLQjQQ u2j+1 = 0, (745)
_ T, T _
mj-myj; = U 11QQ uy;, =1,

where uy, are the 3 X 1 rows of the matrix U. This gives us a large set of equations for the
entries in the matrix QQ”, from which the matrix Q can be recovered using a matrix square
root (Appendix A.1.4). If we have scaled orthography (2.48), i.e., M ; = s;R;, the first and
third equations are equal to s; and can be set equal to each other.

Note that even once @ has been recovered, there still exists a bas-relief ambiguity, i.e.,
we can never be sure if the object is rotating left to right or if its depth reversed version is
moving the other way. (This can be seen in the classic rotating Necker Cube visual illusion.)

1 Tomasi and Kanade (1992) first take the square root of 3 and distribute this to U and V/, but there is no
particular reason to do this.

360 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Additional cues, such as the appearance and disappearance of points, or perspective effects,
both of which are discussed below, can be used to remove this ambiguity.

For motion models other than pure orthography, e.g., for scaled orthography or para-
perspective, the approach above must be extended in the appropriate manner. Such tech-
niques are relatively straightforward to derive from first principles; more details can be found
in papers that extend the basic factorization approach to these more flexible models (Poel-
man and Kanade 1997). Additional extensions of the original factorization algorithm include
multi-body rigid motion (Costeira and Kanade 1995), sequential updates to the factorization
(Morita and Kanade 1997), the addition of lines and planes (Morris and Kanade 1998), and
re-scaling the measurements to incorporate individual location uncertainties (Anandan and
Irani 2002).

A disadvantage of factorization approaches is that they require a complete set of tracks,
i.e., each point must be visible in each frame, in order for the factorization approach to work.
Tomasi and Kanade (1992) deal with this problem by first applying factorization to smaller
denser subsets and then using known camera (motion) or point (structure) estimates to hallu-
cinate additional missing values, which allows them to incrementally incorporate more fea-
tures and cameras. Huynh, Hartley, and Heyden (2003) extend this approach to view missing
data as special cases of outliers. Buchanan and Fitzgibbon (2005) develop fast iterative al-
gorithms for performing large matrix factorizations with missing data. The general topic of
principal component analysis (PCA) with missing data also appears in other computer vision
problems (Shum, Ikeuchi, and Reddy 1995; De la Torre and Black 2003; Gross, Matthews,
and Baker 2006; Torresani, Hertzmann, and Bregler 2008; Vidal, Ma, and Sastry 2010).

7.3.1 Perspective and projective factorization

Another disadvantage of regular factorization is that it cannot deal with perspective cameras.
One way to get around this problem is to perform an initial affine (e.g., orthographic) recon-
struction and to then correct for the perspective effects in an iterative manner (Christy and
Horaud 1996).

Observe that the object-centered projection model (2.76)

Tj; joed Pi ey b (7.46)
1+mnirs - p;
.. . t .

yii = S Tyj P; 1 lyj (7.47)

"1t p;

differs from the scaled orthographic projection model (7.40) by the inclusion of the denomi-
nator terms (1 + n;7,; - p;)."?

12 Assuming that the optical center (c,, ¢y) lies at (0, 0) and that pixels are square.

7.3 Factorization 361

If we knew the correct values of n; = t;jl and the structure and motion parameters I2; and
p;, we could cross-multiply the left hand side (visible point measurements x;; and ;;) by the
denominator and get corrected values, for which the bilinear projection model (7.40) is exact.
In practice, after an initial reconstruction, the values of 7; can be estimated independently
for each frame by comparing reconstructed and sensed point positions. (The third row of the
rotation matrix 7; is always available as the cross-product of the first two rows.) Note that
since the 7; are determined from the image measurements, the cameras do not have to be
pre-calibrated, i.e., their focal lengths can be recovered from f; = s;/n;.

Once the 7; have been estimated, the feature locations can then be corrected before apply-
ing another round of factorization. Note that because of the initial depth reversal ambiguity,
both reconstructions have to be tried while calculating 7;. (The incorrect reconstruction will
result in a negative 1);, which is not physically meaningful.) Christy and Horaud (1996) report
that their algorithm usually converges in three to five iterations, with the majority of the time
spent in the SVD computation.

An alternative approach, which does not assume partially calibrated cameras (known op-
tical center, square pixels, and zero skew) is to perform a fully projective factorization (Sturm
and Triggs 1996; Triggs 1996). In this case, the inclusion of the third row of the camera
matrix in (7.40) is equivalent to multiplying each reconstructed measurement x;; = M ;p;
by its inverse (projective) depth n;; = d;il = 1/(Pj2p;) or, equivalently, multiplying each
measured position by its projective depth d;,

[du@® - du®y o din@n
X = djlifijl dji{i:ji djN:f:jN = MS (7.48)
| davi®art - Ay - dMNTMN |

In the original paper by Sturm and Triggs (1996), the projective depths d;; are obtained from
two-frame reconstructions, while in later work (Triggs 1996; Oliensis and Hartley 2007), they
are initialized to d;; = 1 and updated after each iteration. Oliensis and Hartley (2007) present
an update formula that is guaranteed to converge to a fixed point. None of these authors
suggest actually estimating the third row of P; as part of the projective depth computations.
In any case, it is unclear when a fully projective reconstruction would be preferable to a
partially calibrated one, especially if they are being used to initialize a full bundle adjustment
of all the parameters.

One of the attractions of factorization methods is that they provide a “closed form” (some-
times called a “linear””) method to initialize iterative techniques such as bundle adjustment.
An alternative initialization technique is to estimate the homographies corresponding to some

362 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b) (c) ()

Figure 7.6 3D teacup model reconstructed from a 240-frame video sequence (Tomasi and
Kanade 1992) © 1992 Springer: (a) first frame of video; (b) last frame of video; (c) side
view of 3D model; (d) top view of 3D model.

common plane seen by all the cameras (Rother and Carlsson 2002). In a calibrated camera
setting, this can correspond to estimating consistent rotations for all of the cameras, for ex-
ample, using matched vanishing points (Antone and Teller 2002). Once these have been
recovered, the camera positions can then be obtained by solving a linear system (Antone and
Teller 2002; Rother and Carlsson 2002; Rother 2003).

7.3.2 Application: Sparse 3D model extraction

Once a multi-view 3D reconstruction of the scene has been estimated, it then becomes possi-
ble to create a texture-mapped 3D model of the object and to look at it from new directions.

The first step is to create a denser 3D model than the sparse point cloud that structure
from motion produces. One alternative is to run dense multi-view stereo (Sections 11.3—
11.6). Alternatively, a simpler technique such as 3D triangulation can be used, as shown in
Figure 7.6, in which 207 reconstructed 3D points are triangulated to produce a surface mesh.

In order to create a more realistic model, a texture map can be extracted for each trian-
gle face. The equations to map points on the surface of a 3D triangle to a 2D image are
straightforward: just pass the local 2D coordinates on the triangle through the 3 x 4 camera
projection matrix to obtain a 3 X 3 homography (planar perspective projection). When mul-
tiple source images are available, as is usually the case in multi-view reconstruction, either
the closest and most fronto-parallel image can be used or multiple images can be blended in
to deal with view-dependent foreshortening (Wang, Kang, Szeliski et al. 2001) or to obtain
super-resolved results (Goldluecke and Cremers 2009) Another alternative is to create a sep-
arate texture map from each reference camera and to blend between them during rendering,
which is known as view-dependent texture mapping (Section 13.1.1) (Debevec, Taylor, and
Malik 1996; Debevec, Yu, and Borshukov 1998).

7.4 Bundle adjustment 363

) - @ ® @ o _
S YR S R P P B Pt By P
P il [_ | =KX [——] =.. [_ =plz I =Rjx [_ =X-Cj |»
T T T T
| | | I
I 1y it it 1y
Qi Zi fi K q Cj

Figure 7.7 A set of chained transforms for projecting a 3D point p; into a 2D measure-
ment x;; through a series of transformations f (k) each of which is controlled by its own
set of parameters. The dashed lines indicate the flow of information as partial derivatives
are computed during a backward pass. The formula for the radial distortion function is
Frp(@) = (1 + 5172 + kort) .

7.4 Bundle adjustment

As we have mentioned several times before, the most accurate way to recover structure and
motion is to perform robust non-linear minimization of the measurement (re-projection) er-
rors, which is commonly known in the photogrammetry (and now computer vision) commu-
nities as bundle adjustment."® Triggs, McLauchlan, Hartley et al. (1999) provide an excellent
overview of this topic, including its historical development, pointers to the photogrammetry
literature (Slama 1980; Atkinson 1996; Kraus 1997), and subtle issues with gauge ambigu-
ities. The topic is also treated in depth in textbooks and surveys on multi-view geometry
(Faugeras and Luong 2001; Hartley and Zisserman 2004; Moons, Van Gool, and Vergauwen
2010).

We have already introduced the elements of bundle adjustment in our discussion on iter-
ative pose estimation (Section 6.2.2), i.e., Equations (6.42—6.48) and Figure 6.5. The biggest
difference between these formulas and full bundle adjustment is that our feature location mea-
surements x;; now depend not only on the point (track index) 7 but also on the camera pose
index j,

zi; = f(p;, Rj,c;, K;), (7.49)

and that the 3D point positions p, are also being simultaneously updated. In addition, it is
common to add a stage for radial distortion parameter estimation (2.78),

Ffro(@) = (1+ kir? + kor)z, (7.50)

if the cameras being used have not been pre-calibrated, as shown in Figure 7.7.

13 The term bundle” refers to the bundles of rays connecting camera centers to 3D points and the term “adjust-
ment” refers to the iterative minimization of re-projection error. Alternative terms for this in the vision community
include optimal motion estimation (Weng, Ahuja, and Huang 1993) and non-linear least squares (Appendix A.3)
(Taylor, Kriegman, and Anandan 1991; Szeliski and Kang 1994).

364 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

While most of the boxes (transforms) in Figure 7.7 have previously been explained (6.47),
the leftmost box has not. This box performs a robust comparison of the predicted and mea-
sured 2D locations &;; and &;; after re-scaling by the measurement noise covariance %;;. In
more detail, this operation can be written as

rij = "iij — Cﬁij, (751)
s?j = rz;Ei_jlrij, (7.52)
ey = sy, (7.53)

where p(1?) = p(r). The corresponding Jacobians (partial derivatives) can be written as

Oei; o

52 = P, (7.54)
ij

8812]- 1

8@@» = EU Tij- (755)

The advantage of the chained representation introduced above is that it not only makes
the computations of the partial derivatives and Jacobians simpler but it can also be adapted
to any camera configuration. Consider for example a pair of cameras mounted on a robot
that is moving around in the world, as shown in Figure 7.8a. By replacing the rightmost
two transformations in Figure 7.7 with the transformations shown in Figure 7.8b, we can
simultaneously recover the position of the robot at each time and the calibration of each
camera with respect to the rig, in addition to the 3D structure of the world.

7.4.1 Exploiting sparsity

Large bundle adjustment problems, such as those involving reconstructing 3D scenes from
thousands of Internet photographs (Snavely, Seitz, and Szeliski 2008b; Agarwal, Snavely,
Simon et al. 2009; Agarwal, Furukawa, Snavely et al. 2010; Snavely, Simon, Goesele et al.
2010), can require solving non-linear least squares problems with millions of measurements
(feature matches) and tens of thousands of unknown parameters (3D point positions and cam-
era poses). Unless some care is taken, these kinds of problem can become intractable, since
the (direct) solution of dense least squares problems is cubic in the number of unknowns.

Fortunately, structure from motion is a bipartite problem in structure and motion. Each
feature point x;; in a given image depends on one 3D point position p; and one 3D camera
pose (R;, c¢;). This is illustrated in Figure 7.9a, where each circle (1-9) indicates a 3D point,
each square (A-D) indicates a camera, and lines (edges) indicate which points are visible in
which cameras (2D features). If the values for all the points are known or fixed, the equations
for all the cameras become independent, and vice versa.

7.4 Bundle adjustment 365

)) T) w
Tl [] B0 [P e |] R0 | P
. C - C - r. el r

—— =R{X [——p| =XC t——p =RX |- =XC |-—-

T T T T

| | | |

T Ty i T

a5 ¢’ al c

(b)

Figure 7.8 A camera rig and its associated transform chain. (a) As the mobile rig (robot)
moves around in the world, its pose with respect to the world at time ¢ is captured by (R}, c}).
Each camera’s pose with respect to the rig is captured by (R;, cj) (b) A 3D point with world
coordinates p} is first transformed into rig coordinates pj, and then through the rest of the

camera-specific chain, as shown in Figure 7.7.

1 2 3 456789 ABCD

38| 1 2 3 456789 ABCD

@
a
DOm>O00~N0aswN R

(b) ©)

Figure 7.9 (a) Bipartite graph for a toy structure from motion problem and (b) its associated
Jacobian J and (c) Hessian A. Numbers indicate 3D points and letters indicate cameras. The
dashed arcs and light blue squares indicate the fill-in that occurs when the structure (point)
variables are eliminated.

366 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

If we order the structure variables before the motion variables in the Hessian matrix A
(and hence also the right hand side vector b), we obtain a structure for the Hessian shown in
Figure 7.9¢c.'* When such a system is solved using sparse Cholesky factorization (see Ap-
pendix A.4) (Bjorck 1996; Golub and Van Loan 1996), the fill-in occurs in the smaller motion
Hessian A.. (Szeliski and Kang 1994; Triggs, McLauchlan, Hartley ef al. 1999; Hartley and
Zisserman 2004; Lourakis and Argyros 2009; Engels, Stewénius, and Nistér 2006). Some re-
cent papers by (Byrdd and gAstrom 2009), Jeong, Nistér, Steedly et al. (2010) and (Agarwal,
Snavely, Seitz et al. 2010) explore the use of iterative (conjugate gradient) techniques for the
solution of bundle adjustment problems.

In more detail, the reduced motion Hessian is computed using the Schur complement,

T -1
A, =A.-ATA A, (7.56)

where A, is the point (structure) Hessian (the top left block of Figure 7.9c), A, is the
point-camera Hessian (the top right block), and A.. and A’ are the motion Hessians before
and after the point variable elimination (the bottom right block of Figure 7.9c). Notice that
A’ has a non-zero entry between two cameras if they see any 3D point in common. This is
indicated with dashed arcs in Figure 7.9a and light blue squares in Figure 7.9c.

Whenever there are global parameters present in the reconstruction algorithm, such as
camera intrinsics that are common to all of the cameras, or camera rig calibration parameters
such as those shown in Figure 7.8, they should be ordered last (placed along the right and
bottom edges of A) in order to reduce fill-in.

Engels, Stewénius, and Nistér (2006) provide a nice recipe for sparse bundle adjustment,
including all the steps needed to initialize the iterations, as well as typical computation times
for a system that uses a fixed number of backward-looking frames in a real-time setting. They
also recommend using homogeneous coordinates for the structure parameters p,, which is a
good idea, since it avoids numerical instabilities for points near infinity.

Bundle adjustment is now the standard method of choice for most structure-from-motion
problems and is commonly applied to problems with hundreds of weakly calibrated images
and tens of thousands of points, e.g., in systems such as Photosynth. (Much larger prob-
lems are commonly solved in photogrammetry and aerial imagery, but these are usually care-
fully calibrated and make use of surveyed ground control points.) However, as the problems
become larger, it becomes impractical to re-solve full bundle adjustment problems at each
iteration.

One approach to dealing with this problem is to use an incremental algorithm, where new
cameras are added over time. (This makes particular sense if the data is being acquired from

14 This ordering is preferable when there are fewer cameras than 3D points, which is the usual case. The exception
is when we are tracking a small number of points through many video frames, in which case this ordering should be
reversed.

7.4 Bundle adjustment 367

a video camera or moving vehicle (Nistér, Naroditsky, and Bergen 2006; Pollefeys, Nistér,
Frahm et al. 2008).) A Kalman filter can be used to incrementally update estimates as new
information is acquired. Unfortunately, such sequential updating is only statistically optimal
for linear least squares problems.

For non-linear problems such as structure from motion, an extended Kalman filter, which
linearizes measurement and update equations around the current estimate, needs to be used
(Gelb 1974; Viéville and Faugeras 1990). To overcome this limitation, several passes can
be made through the data (Azarbayejani and Pentland 1995). Because points disappear from
view (and old cameras become irrelevant), a variable state dimension filter (VSDF) can be
used to adjust the set of state variables over time, for example, by keeping only cameras and
point tracks seen in the last k frames (McLauchlan 2000). A more flexible approach to using
a fixed number of frames is to propagate corrections backwards through points and cameras
until the changes on parameters are below a threshold (Steedly and Essa 2001). Variants of
these techniques, including methods that use a fixed window for bundle adjustment (Engels,
Stewénius, and Nistér 20006) or select keyframes for doing full bundle adjustment (Klein and
Murray 2008) are now commonly used in real-time tracking and augmented-reality applica-
tions, as discussed in Section 7.4.2.

When maximum accuracy is required, it is still preferable to perform a full bundle ad-
justment over all the frames. In order to control the resulting computational complexity, one
approach is to lock together subsets of frames into locally rigid configurations and to optimize
the relative positions of these cluster (Steedly, Essa, and Dellaert 2003). A different approach
is to select a smaller number of frames to form a skeletal set that still spans the whole dataset
and produces reconstructions of comparable accuracy (Snavely, Seitz, and Szeliski 2008b).
We describe this latter technique in more detail in Section 7.4.4, where we discuss applica-
tions of structure from motion to large image sets.

While bundle adjustment and other robust non-linear least squares techniques are the
methods of choice for most structure-from-motion problems, they suffer from initialization
problems, i.e., they can get stuck in local energy minima if not started sufficiently close
to the global optimum. Many systems try to mitigate this by being conservative in what
reconstruction they perform early on and which cameras and points they add to the solution
(Section 7.4.4). An alternative, however, is to re-formulate the problem using a norm that
supports the computation of global optima.

Kahl and Hartley (2008) describe techniques for using L., norms in geometric recon-
struction problems. The advantage of such norms is that globally optimal solutions can be
efficiently computed using second-order cone programming (SOCP). The disadvantage is that
L, norms are particularly sensitive to outliers and so must be combined with good outlier
rejection techniques before they can be used.

368 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

7.4.2 Application: Match move and augmented reality

One of the neatest applications of structure from motion is to estimate the 3D motion of a
video or film camera, along with the geometry of a 3D scene, in order to superimpose 3D
graphics or computer-generated images (CGI) on the scene. In the visual effects industry,
this is known as the match move problem (Roble 1999), since the motion of the synthetic 3D
camera used to render the graphics must be matched to that of the real-world camera. For
very small motions, or motions involving pure camera rotations, one or two tracked points can
suffice to compute the necessary visual motion. For planar surfaces moving in 3D, four points
are needed to compute the homography, which can then be used to insert planar overlays, e.g.,
to replace the contents of advertising billboards during sporting events.

The general version of this problem requires the estimation of the full 3D camera pose
along with the focal length (zoom) of the lens and potentially its radial distortion parameters
(Roble 1999). When the 3D structure of the scene is known ahead of time, pose estima-
tion techniques such as view correlation (Bogart 1991) or through-the-lens camera control
(Gleicher and Witkin 1992) can be used, as described in Section 6.2.3.

For more complex scenes, it is usually preferable to recover the 3D structure simultane-
ously with the camera motion using structure-from-motion techniques. The trick with using
such techniques is that in order to prevent any visible jitter between the synthetic graph-
ics and the actual scene, features must be tracked to very high accuracy and ample feature
tracks must be available in the vicinity of the insertion location. Some of today’s best known
match move software packages, such as the boujou package from 2d3,'> which won an Emmy
award in 2002, originated in structure-from-motion research in the computer vision commu-
nity (Fitzgibbon and Zisserman 1998).

Closely related to the match move problem is robotics navigation, where a robot must es-
timate its location relative to its environment, while simultaneously avoiding any dangerous
obstacles. This problem is often known as simultaneous localization and mapping (SLAM)
(Thrun, Burgard, and Fox 2005) or visual odometry (Levin and Szeliski 2004; Nistér, Nar-
oditsky, and Bergen 2006; Maimone, Cheng, and Matthies 2007). Early versions of such
algorithms used range-sensing techniques, such as ultrasound, laser range finders, or stereo
matching, to estimate local 3D geometry, which could then be fused into a 3D model. Newer
techniques can perform the same task based purely on visual feature tracking, sometimes not
even requiring a stereo camera rig (Davison, Reid, Molton et al. 2007).

Another closely related application is augmented reality, where 3D objects are inserted
into a video feed in real time, often to annotate or help users understand a scene (Azuma,
Baillot, Behringer et al. 2001). While traditional systems require prior knowledge about the
scene or object being visually tracked (Rosten and Drummond 2005), newer systems can

15 hitp://www.2d3.com/.

http://www.2d3.com/

7.4 Bundle adjustment 369

(a)

Figure 7.10 3D augmented reality: (a) Darth Vader and a horde of Ewoks battle it out
on a table-top recovered using real-time, keyframe-based structure from motion (Klein and
Murray 2007) (©) 2007 IEEE; (b) a virtual teapot is fixed to the top of a real-world coffee cup,
whose pose is re-recognized at each time frame (Gordon and Lowe 2006) (©) 2007 Springer.

simultaneously build up a model of the 3D environment and then track it, so that graphics can
be superimposed.

Klein and Murray (2007) describe a parallel tracking and mapping (PTAM) system,
which simultaneously applies full bundle adjustment to keyframes selected from a video
stream, while performing robust real-time pose estimation on intermediate frames. Fig-
ure 7.10a shows an example of their system in use. Once an initial 3D scene has been
reconstructed, a dominant plane is estimated (in this case, the table-top) and 3D animated
characters are virtually inserted. Klein and Murray (2008) extend their previous system to
handle even faster camera motion by adding edge features, which can still be detected even
when interest points become too blurred. They also use a direct (intensity-based) rotation
estimation algorithm for even faster motions.

Instead of modeling the whole scene as one rigid reference frame, Gordon and Lowe
(2006) first build a 3D model of an individual object using feature matching and structure
from motion. Once the system has been initialized, for every new frame, they find the object
and its pose using a 3D instance recognition algorithm, and then superimpose a graphical
object onto that model, as shown in Figure 7.10b.

While reliably tracking such objects and environments is now a well-solved problem,
determining which pixels should be occluded by foreground scene elements still remains an
open problem (Chuang, Agarwala, Curless et al. 2002; Wang and Cohen 2007a).

370 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

7.4.3 Uncertainty and ambiguities

Because structure from motion involves the estimation of so many highly coupled parameters,
often with no known “ground truth” components, the estimates produced by structure from
motion algorithms can often exhibit large amounts of uncertainty (Szeliski and Kang 1997).
An example of this is the classic bas-relief ambiguity, which makes it hard to simultaneously
estimate the 3D depth of a scene and the amount of camera motion (Oliensis 2005).'

As mentioned before, a unique coordinate frame and scale for a reconstructed scene can-
not be recovered from monocular visual measurements alone. (When a stereo rig is used,
the scale can be recovered if we know the distance (baseline) between the cameras.) This
seven-degree-of-freedom gauge ambiguity makes it tricky to compute the covariance matrix
associated with a 3D reconstruction (Triggs, McLauchlan, Hartley ef al. 1999; Kanatani and
Morris 2001). A simple way to compute a covariance matrix that ignores the gauge freedom
(indeterminacy) is to throw away the seven smallest eigenvalues of the information matrix (in-
verse covariance), whose values are equivalent to the problem Hessian A up to noise scaling
(see Section 6.1.4 and Appendix B.6). After we do this, the resulting matrix can be inverted
to obtain an estimate of the parameter covariance.

Szeliski and Kang (1997) use this approach to visualize the largest directions of variation
in typical structure from motion problems. Not surprisingly, they find that (ignoring the gauge
freedoms), the greatest uncertainties for problems such as observing an object from a small
number of nearby viewpoints are in the depths of the 3D structure relative to the extent of the
camera motion.!”

It is also possible to estimate local or marginal uncertainties for individual parameters,
which corresponds simply to taking block sub-matrices from the full covariance matrix. Un-
der certain conditions, such as when the camera poses are relatively certain compared to 3D
point locations, such uncertainty estimates can be meaningful. However, in many cases, indi-
vidual uncertainty measures can mask the extent to which reconstruction errors are correlated,
which is why looking at the first few modes of greatest joint variation can be helpful.

The other way in which gauge ambiguities affect structure from motion and, in particular,
bundle adjustment is that they make the system Hessian matrix A rank-deficient and hence
impossible to invert. A number of techniques have been proposed to mitigate this problem
(Triggs, McLauchlan, Hartley ef al. 1999; Bartoli 2003). In practice, however, it appears that
simply adding a small amount of the Hessian diagonal Adiag(A) to the Hessian A itself, as is
done in the Levenberg—Marquardt non-linear least squares algorithm (Appendix A.3), usually

16 Bas-relief refers to a kind of sculpture in which objects, often on ornamental friezes, are sculpted with less
depth than they actually occupy. When lit from above by sunlight, they appear to have true 3D depth because of the
ambiguity between relative depth and the angle of the illuminant (Section 12.1.1).

17" A good way to minimize the amount of such ambiguities is to use wide field of view cameras (Antone and
Teller 2002; Levin and Szeliski 2006).

7.4 Bundle adjustment 371

works well.

7.4.4 Application: Reconstruction from Internet photos

The most widely used application of structure from motion is in the reconstruction of 3D
objects and scenes from video sequences and collections of images (Pollefeys and Van Gool
2002). The last decade has seen an explosion of techniques for performing this task auto-
matically without the need for any manual correspondence or pre-surveyed ground control
points. A lot of these techniques assume that the scene is taken with the same camera and
hence the images all have the same intrinsics (Fitzgibbon and Zisserman 1998; Koch, Polle-
feys, and Van Gool 2000; Schaffalitzky and Zisserman 2002; Tuytelaars and Van Gool 2004;
Pollefeys, Nistér, Frahm et al. 2008; Moons, Van Gool, and Vergauwen 2010). Many of
these techniques take the results of the sparse feature matching and structure from motion
computation and then compute dense 3D surface models using multi-view stereo techniques
(Section 11.6) (Koch, Pollefeys, and Van Gool 2000; Pollefeys and Van Gool 2002; Pollefeys,
Nistér, Frahm et al. 2008; Moons, Van Gool, and Vergauwen 2010).

The latest innovation in this space has been the application of structure from motion and
multi-view stereo techniques to thousands of images taken from the Internet, where very little
is known about the cameras taking the photographs (Snavely, Seitz, and Szeliski 2008a). Be-
fore the structure from motion computation can begin, it is first necessary to establish sparse
correspondences between different pairs of images and to then link such correspondences into
feature tracks, which associate individual 2D image features with global 3D points. Because
the O(N?) comparison of all pairs of images can be very slow, a number of techniques have
been developed in the recognition community to make this process faster (Section 14.3.2)
(Nistér and Stewénius 2006; Philbin, Chum, Sivic et al. 2008; Li, Wu, Zach et al. 2008;
Chum, Philbin, and Zisserman 2008; Chum and Matas 2010).

To begin the reconstruction process, it is important to to select a good pair of images,
where there are both a large number of consistent matches (to lower the likelihood of in-
correct correspondences) and a significant amount of out-of-plane parallax,'® to ensure that
a stable reconstruction can be obtained (Snavely, Seitz, and Szeliski 2006). The EXIF tags
associated with the photographs can be used to get good initial estimates for camera focal
lengths, although this is not always strictly necessary, since these parameters are re-adjusted
as part of the bundle adjustment process.

Once an initial pair has been reconstructed, the pose of cameras that see a sufficient num-
ber of the resulting 3D points can be estimated (Section 6.2) and the complete set of cameras
and feature correspondences can be used to perform another round of bundle adjustment. Fig-

18 A simple way to compute this is to robustly fit a homography to the correspondences and measure reprojection
errors.

372 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 7.11 Incremental structure from motion (Snavely, Seitz, and Szeliski 2006) (©) 2006
ACM: Starting with an initial two-frame reconstruction of Trevi Fountain, batches of images
are added using pose estimation, and their positions (along with the 3D model) are refined
using bundle adjustment.

ure 7.11 shows the progression of the incremental bundle adjustment algorithm, where sets of
cameras are added after each successive round of bundle adjustment, while Figure 7.12 shows
some additional results. An alternative to this kind of seed and grow approach is to first re-
construct triplets of images and then hierarchically merge triplets into larger collections, as
described by Fitzgibbon and Zisserman (1998).

Unfortunately, as the incremental structure from motion algorithm continues to add more
cameras and points, it can become extremely slow. The direct solution of a dense system
of O(N)) equations for the camera pose updates can take O(N?) time; while structure from
motion problems are rarely dense, scenes such as city squares have a high percentage of
cameras that see points in common. Re-running the bundle adjustment algorithm after every
few camera additions results in a quartic scaling of the run time with the number of images
in the dataset. One approach to solving this problem is to select a smaller number of images
for the original scene reconstruction and to fold in the remaining images at the very end.

Snavely, Seitz, and Szeliski (2008b) develop an algorithm for computing such a skele-
tal set of images, which is guaranteed to produce a reconstruction whose error is within a
bounded factor of the optimal reconstruction accuracy. Their algorithm first evaluates all
pairwise uncertainties (position covariances) between overlapping images and then chains
them together to estimate a lower bound for the relative uncertainty of any distant pair. The
skeletal set is constructed so that the maximal uncertainty between any pair grows by no
more than a constant factor. Figure 7.13 shows an example of the skeletal set computed for
784 images of the Pantheon in Rome. As you can see, even though the skeletal set contains
just a fraction of the original images, the shapes of the skeletal set and full bundle adjusted
reconstructions are virtually indistinguishable.

The ability to automatically reconstruct 3D models from large, unstructured image col-
lections has opened a wide variety of additional applications, including the ability to automat-

7.4 Bundle adjustment 373

i
&=
e
L v P
-
..1-.“‘: oy x s
Sl = w Py -
- T
- » Sl \f at T -
g * Wi el Tw
- f -

- B .‘ -
- - 2F ‘v\\\nfah:.ﬁw b
¢ vl NP &"Mﬁ%

(a)

Figure 7.12 3D reconstructions produced by the incremental structure from motion algo-
rithm developed by Snavely, Seitz, and Szeliski (2006) (©) 2006 ACM: (a) cameras and point
cloud from Trafalgar Square; (b) cameras and points overlaid on an image from the Great Wall
of China; (c) overhead view of a reconstruction of the Old Town Square in Prague registered

to an aerial photograph.

(b) (©)

Figure 7.13 Large scale structure from motion using skeletal sets (Snavely, Seitz, and
Szeliski 2008b) (©) 2008 IEEE: (a) original match graph for 784 images; (b) skeletal set
containing 101 images; (c) top-down view of scene (Pantheon) reconstructed from the skele-
tal set; (d) reconstruction after adding in the remaining images using pose estimation; (e) final
bundle adjusted reconstruction, which is almost identical.

374 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

ically find and label locations and regions of interest (Simon, Snavely, and Seitz 2007; Simon
and Seitz 2008; Gammeter, Bossard, Quack et al. 2009) and to cluster large image collections
so that they can be automatically labeled (Li, Wu, Zach et al. 2008; Quack, Leibe, and Van
Gool 2008). Some of these application are discussed in more detail in Section 13.1.2.

7.5 Constrained structure and motion

The most general algorithms for structure from motion make no prior assumptions about the
objects or scenes that they are reconstructing. In many cases, however, the scene contains
higher-level geometric primitives, such as lines and planes. These can provide information
complementary to interest points and also serve as useful building blocks for 3D modeling
and visualization. Furthermore, these primitives are often arranged in particular relationships,
i.e., many lines and planes are either parallel or orthogonal to each other. This is particularly
true of architectural scenes and models, which we study in more detail in Section 12.6.1.
Sometimes, instead of exploiting regularity in the scene structure, it is possible to take
advantage of a constrained motion model. For example, if the object of interest is rotating
on a turntable (Szeliski 1991b), i.e., around a fixed but unknown axis, specialized techniques
can be used to recover this motion (Fitzgibbon, Cross, and Zisserman 1998). In other situa-
tions, the camera itself may be moving in a fixed arc around some center of rotation (Shum
and He 1999). Specialized capture setups, such as mobile stereo camera rigs or moving ve-
hicles equipped with multiple fixed cameras, can also take advantage of the knowledge that
individual cameras are (mostly) fixed with respect to the capture rig, as shown in Figure 7.8.!

7.5.1 Line-based techniques

It is well known that pairwise epipolar geometry cannot be recovered from line matches
alone, even if the cameras are calibrated. To see this, think of projecting the set of lines in
each image into a set of 3D planes in space. You can move the two cameras around into any
configuration you like and still obtain a valid reconstruction for 3D lines.

When lines are visible in three or more views, the trifocal tensor can be used to transfer
lines from one pair of images to another (Hartley and Zisserman 2004). The trifocal tensor
can also be computed on the basis of line matches alone.

Schmid and Zisserman (1997) describe a widely used technique for matching 2D lines
based on the average of 15 x 15 pixel correlation scores evaluated at all pixels along their

19 Because of mechanical compliance and jitter, it may be prudent to allow for a small amount of individual camera
rotation around a nominal position.

7.5 Constrained structure and motion 375

Figure 7.14 Two images of a toy house along with their matched 3D line segments (Schmid
and Zisserman 1997) (© 1997 Springer.

common line segment intersection.?” In their system, the epipolar geometry is assumed to be
known, e.g., computed from point matches. For wide baselines, all possible homographies
corresponding to planes passing through the 3D line are used to warp pixels and the maximum
correlation score is used. For triplets of images, the trifocal tensor is used to verify that
the lines are in geometric correspondence before evaluating the correlations between line
segments. Figure 7.14 shows the results of using their system.

Bartoli and Sturm (2003) describe a complete system for extending three view relations
(trifocal tensors) computed from manual line correspondences to a full bundle adjustment of
all the line and camera parameters. The key to their approach is to use the Pliicker coor-
dinates (2.12) to parameterize lines and to directly minimize reprojection errors. It is also
possible to represent 3D line segments by their endpoints and to measure either the reprojec-
tion error perpendicular to the detected 2D line segments in each image or the 2D errors using
an elongated uncertainty ellipse aligned with the line segment direction (Szeliski and Kang
1994).

Instead of reconstructing 3D lines, Bay, Ferrari, and Van Gool (2005) use RANSAC to
group lines into likely coplanar subsets. Four lines are chosen at random to compute a homog-
raphy, which is then verified for these and other plausible line segment matches by evaluating
color histogram-based correlation scores. The 2D intersection points of lines belonging to the
same plane are then used as virtual measurements to estimate the epipolar geometry, which
is more accurate than using the homographies directly.

An alternative to grouping lines into coplanar subsets is to group lines by parallelism.
Whenever three or more 2D lines share a common vanishing point, there is a good likelihood
that they are parallel in 3D. By finding multiple vanishing points in an image (Section 4.3.3)
and establishing correspondences between such vanishing points in different images, the rel-
ative rotations between the various images (and often the camera intrinsics) can be directly
estimated (Section 6.3.2).

20 Because lines often occur at depth or orientation discontinuities, it may be preferable to compute correlation
scores (or to match color histograms (Bay, Ferrari, and Van Gool 2005)) separately on each side of the line.

376 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Shum, Han, and Szeliski (1998) describe a 3D modeling system which first constructs
calibrated panoramas from multiple images (Section 7.4) and then has the user draw vertical
and horizontal lines in the image to demarcate the boundaries of planar regions. The lines
are initially used to establish an absolute rotation for each panorama and are later used (along
with the inferred vertices and planes) to infer a 3D structure, which can be recovered up to
scale from one or more images (Figure 12.15).

A fully automated approach to line-based structure from motion is presented vy Werner
and Zisserman (2002). In their system, they first find lines and group them by common van-
ishing points in each image (Section 4.3.3). The vanishing points are then used to calibrate the
camera, i.e., to performa a “metric upgrade” (Section 6.3.2). Lines corresponding to common
vanishing points are then matched using both appearance (Schmid and Zisserman 1997) and
trifocal tensors. The resulting set of 3D lines, color coded by common vanishing directions
(3D orientations) is shown in Figure 12.16a. These lines are then used to infer planes and a
block-structured model for the scene, as described in more detail in Section 12.6.1.

7.5.2 Plane-based techniques

In scenes that are rich in planar structures, e.g., in architecture and certain kinds of manu-
factured objects such as furniture, it is possible to directly estimate homographies between
different planes, using either feature-based or intensity-based methods. In principle, this in-
formation can be used to simultaneously infer the camera poses and the plane equations, i.e.,
to compute plane-based structure from motion.

Luong and Faugeras (1996) show how a fundamental matrix can be directly computed
from two or more homographies using algebraic manipulations and least squares. Unfortu-
nately, this approach often performs poorly, since the algebraic errors do not correspond to
meaningful reprojection errors (Szeliski and Torr 1998).

A better approach is to hallucinate virtual point correspondences within the areas from
which each homography was computed and to feed them into a standard structure from mo-
tion algorithm (Szeliski and Torr 1998). An even better approach is to use full bundle adjust-
ment with explicit plane equations, as well as additional constraints to force reconstructed
co-planar features to lie exactly on their corresponding planes. (A principled way to do this
is to establish a coordinate frame for each plane, e.g., at one of the feature points, and to use
2D in-plane parameterizations for the other points.) The system developed by Shum, Han,
and Szeliski (1998) shows an example of such an approach, where the directions of lines and
normals for planes in the scene are pre-specified by the user.

7.6 Additional reading 377

7.6 Additional reading

The topic of structure from motion is extensively covered in books and review articles on
multi-view geometry (Faugeras and Luong 2001; Hartley and Zisserman 2004; Moons, Van
Gool, and Vergauwen 2010). For two-frame reconstruction, Hartley (1997a) wrote a highly
cited paper on the “eight-point algorithm” for computing an essential or fundamental ma-
trix with reasonable point normalization. When the cameras are calibrated, the five-point
algorithm of Nistér (2004) can be used in conjunction with RANSAC to obtain initial recon-
structions from the minimum number of points. When the cameras are uncalibrated, various
self-calibration techniques can be found in work by Hartley and Zisserman (2004); Moons,
Van Gool, and Vergauwen (2010)—I only briefly mention one of the simplest techniques, the
Kruppa equations (7.35).

In applications where points are being tracked from frame to frame, factorization tech-
niques, based on either orthographic camera models (Tomasi and Kanade 1992; Poelman
and Kanade 1997; Costeira and Kanade 1995; Morita and Kanade 1997; Morris and Kanade
1998; Anandan and Irani 2002) or projective extensions (Christy and Horaud 1996; Sturm
and Triggs 1996; Triggs 1996; Oliensis and Hartley 2007), can be used.

Triggs, McLauchlan, Hartley et al. (1999) provide a good tutorial and survey on bundle
adjustment, while Lourakis and Argyros (2009) and Engels, Stewénius, and Nistér (2006)
provide tips on implementation and effective practices. Bundle adjustment is also covered
in textbooks and surveys on multi-view geometry (Faugeras and Luong 2001; Hartley and
Zisserman 2004; Moons, Van Gool, and Vergauwen 2010). Techniques for handling larger
problems are described by Snavely, Seitz, and Szeliski (2008b); Agarwal, Snavely, Simon
et al. (2009); Jeong, Nistér, Steedly er al. (2010); Agarwal, Snavely, Seitz et al. (2010).
While bundle adjustment is often called as an inner loop inside incremental reconstruction
algorithms (Snavely, Seitz, and Szeliski 2006), hierarchical (Fitzgibbon and Zisserman 1998;
Farenzena, Fusiello, and Gherardi 2009) and global (Rother and Carlsson 2002; Martinec and
Pajdla 2007) approaches for initialization are also possible and perhaps even preferable.

As structure from motion starts being applied to dynamic scenes, the topic of non-rigid
structure from motion (Torresani, Hertzmann, and Bregler 2008), which we do not cover in
this book, will become more important.

7.7 Exercises

Ex 7.1: Triangulation Use the calibration pattern you built and tested in Exercise 6.7 to
test your triangulation accuracy. As an alternative, generate synthetic 3D points and cameras
and add noise to the 2D point measurements.

378 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1. Assume that you know the camera pose, i.e., the camera matrices. Use the 3D distance
to rays (7.4) or linearized versions of Equations (7.5-7.6) to compute an initial set of
3D locations. Compare these to your known ground truth locations.

2. Use iterative non-linear minimization to improve your initial estimates and report on
the improvement in accuracy.

3. (Optional) Use the technique described by Hartley and Sturm (1997) to perform two-
frame triangulation.

4. See if any of the failure modes reported by Hartley and Sturm (1997) or Hartley (1998)
occur in practice.

Ex 7.2: Essential and fundamental matrix Implement the two-frame E and F' matrix es-
timation techniques presented in Section 7.2, with suitable re-scaling for better noise immu-
nity.

1. Use the data from Exercise 7.1 to validate your algorithms and to report on their accu-
racy.

2. (Optional) Implement one of the improved F' or E estimation algorithms, e.g., us-
ing renormalization (Zhang 1998b; Torr and Fitzgibbon 2004; Hartley and Zisserman
2004), RANSAC (Torr and Murray 1997), least media squares (LMS), or the five-point
algorithm developed by Nistér (2004).

Ex 7.3: View morphing and interpolation Implement automatic view morphing, i.e., com-
pute two-frame structure from motion and then use these results to generate a smooth anima-
tion from one image to the next (Section 7.2.3).

1. Decide how to represent your 3D scene, e.g., compute a Delaunay triangulation of the
matched point and decide what to do with the triangles near the border. (Hint: try fitting
a plane to the scene, e.g., behind most of the points.)

2. Compute your in-between camera positions and orientations.

3. Warp each triangle to its new location, preferably using the correct perspective projec-
tion (Szeliski and Shum 1997).

4. (Optional) If you have a denser 3D model (e.g., from stereo), decide what to do at the
“cracks”.

5. (Optional) For a non-rigid scene, e.g., two pictures of a face with different expressions,
not all of your matched points will obey the epipolar geometry. Decide how to handle
them to achieve the best effect.

7.7 Exercises 379

Ex 7.4: Factorization Implement the factorization algorithm described in Section 7.3 us-

ing point tracks you computed in Exercise 4.5.

1.

(Optional) Implement uncertainty rescaling (Anandan and Irani 2002) and comment on
whether this improves your results.

(Optional) Implement one of the perspective improvements to factorization discussed
in Section 7.3.1 (Christy and Horaud 1996; Sturm and Triggs 1996; Triggs 1996). Does
this produce significantly lower reprojection errors? Can you upgrade this reconstruc-
tion to a metric one?

Ex 7.5: Bundle adjuster Implement a full bundle adjuster. This may sound daunting, but

it really is not.

1.

Devise the internal data structures and external file representations to hold your camera
parameters (position, orientation, and focal length), 3D point locations (Euclidean or
homogeneous), and 2D point tracks (frame and point identifier as well as 2D locations).

Use some other technique, such as factorization, to initialize the 3D point and camera
locations from your 2D tracks (e.g., a subset of points that appears in all frames).

Implement the code corresponding to the forward transformations in Figure 7.7, i.e.,
for each 2D point measurement, take the corresponding 3D point, map it through the
camera transformations (including perspective projection and focal length scaling), and
compare it to the 2D point measurement to get a residual error.

Take the residual error and compute its derivatives with respect to all the unknown
motion and structure parameters, using backward chaining, as shown, e.g., in Figure 7.7
and Equation (6.47). This gives you the sparse Jacobian J used in Equations (6.13—
6.17) and Equation (6.43).

Use a sparse least squares or linear system solver, e.g., MATLAB, SparseSuite, or
SPARSKIT (see Appendix A.4 and A.5), to solve the corresponding linearized system,
adding a small amount of diagonal preconditioning, as in Levenberg—Marquardt.

Update your parameters, make sure your rotation matrices are still orthonormal (e.g.,
by re-computing them from your quaternions), and continue iterating while monitoring
your residual error.

(Optional) Use the “Schur complement trick” (7.56) to reduce the size of the system
being solved (Triggs, McLauchlan, Hartley et al. 1999; Hartley and Zisserman 2004;
Lourakis and Argyros 2009; Engels, Stewénius, and Nistér 2006).

380 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

8. (Optional) Implement your own iterative sparse solver, e.g., conjugate gradient, and
compare its performance to a direct method.

9. (Optional) Make your bundle adjuster robust to outliers, or try adding some of the other
improvements discussed in (Engels, Stewénius, and Nistér 2006). Can you think of any
other ways to make your algorithm even faster or more robust?

Ex 7.6: Match move and augmented reality Use the results of the previous exercise to
superimpose a rendered 3D model on top of video. See Section 7.4.2 for more details and
ideas. Check for how “locked down” the objects are.

Ex 7.7: Line-based reconstruction Augment the previously developed bundle adjuster to
include lines, possibly with known 3D orientations.

Optionally, use co-planar sets of points and lines to hypothesize planes and to enforce
co-planarity (Schaffalitzky and Zisserman 2002; Robertson and Cipolla 2002)

Ex 7.8: Flexible bundle adjuster Design a bundle adjuster that allows for arbitrary chains
of transformations and prior knowledge about the unknowns, as suggested in Figures 7.7-7.8.

Ex 7.9: Unordered image matching Compute the camera pose and 3D structure of a scene
from an arbitrary collection of photographs (Brown and Lowe 2003; Snavely, Seitz, and
Szeliski 2006).

8.1

8.2

8.3

8.4

8.5

8.6
8.7

Chapter 8

Dense motion estimation

Translational alignment L. 384
8.1.1 Hierarchical motion estimation 387
8.1.2 Fourier-based alignment 388
8.1.3 Incremental refinement L. 392
Parametricmotion L. 398
8.2.1 Application: Video stabilization 401
8.2.2 Learnedmotionmodels. 403
Spline-based motion 404
8.3.1 Application: Medical image registration 408
Optical flow o 409
8.4.1 Multi-frame motion estimation 413
8.4.2 Application: Video denoising 414
8.4.3 Application: De-interlacing 415
Layered motion 415
8.5.1 Application: Frame interpolation 418
8.5.2 Transparent layers and reflections 419
Additional reading 421
Exercises 422

382 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

.

initial léyers final layers

layers with pixel assignments and flow

(d)

)
[SO

Figure 8.1 Motion estimation: (a-b) regularization-based optical flow (Nagel and Enkel-
mann 1986) © 1986 IEEE; (c—d) layered motion estimation (Wang and Adelson 1994) (©
1994 IEEE; (e—f) sample image and ground truth flow from evaluation database (Baker,
Black, Lewis et al. 2007) © 2007 IEEE.

8 Dense motion estimation 383

Algorithms for aligning images and estimating motion in video sequences are among the most
widely used in computer vision. For example, frame-rate image alignment is widely used in
camcorders and digital cameras to implement their image stabilization (IS) feature.

An early example of a widely used image registration algorithm is the patch-based trans-
lational alignment (optical flow) technique developed by Lucas and Kanade (1981). Variants
of this algorithm are used in almost all motion-compensated video compression schemes
such as MPEG and H.263 (Le Gall 1991). Similar parametric motion estimation algorithms
have found a wide variety of applications, including video summarization (Teodosio and
Bender 1993; Irani and Anandan 1998), video stabilization (Hansen, Anandan, Dana et al.
1994; Srinivasan, Chellappa, Veeraraghavan et al. 2005; Matsushita, Ofek, Ge et al. 2006),
and video compression (Irani, Hsu, and Anandan 1995; Lee, ge Chen, lung Bruce Lin et
al. 1997). More sophisticated image registration algorithms have also been developed for
medical imaging and remote sensing. Image registration techniques are surveyed by Brown
(1992), Zitov’aa and Flusser (2003), Goshtasby (2005), and Szeliski (2006a).

To estimate the motion between two or more images, a suitable error metric must first
be chosen to compare the images (Section 8.1). Once this has been established, a suitable
search technique must be devised. The simplest technique is to exhaustively try all possible
alignments, i.e., to do a full search. In practice, this may be too slow, so hierarchical coarse-
to-fine techniques (Section 8.1.1) based on image pyramids are normally used. Alternatively,
Fourier transforms (Section 8.1.2) can be used to speed up the computation.

To get sub-pixel precision in the alignment, incremental methods (Section 8.1.3) based
on a Taylor series expansion of the image function are often used. These can also be applied
to parametric motion models (Section 8.2), which model global image transformations such
as rotation or shearing. Motion estimation can be made more reliable by learning the typi-
cal dynamics or motion statistics of the scenes or objects being tracked, e.g., the natural gait
of walking people (Section 8.2.2). For more complex motions, piecewise parametric spline
motion models (Section 8.3) can be used. In the presence of multiple independent (and per-
haps non-rigid) motions, general-purpose optical flow (or optic flow) techniques need to be
used (Section 8.4). For even more complex motions that include a lot of occlusions, layered
motion models (Section 8.5), which decompose the scene into coherently moving layers, can
work well.

In this chapter, we describe each of these techniques in more detail. Additional details
can be found in review and comparative evaluation papers on motion estimation (Barron,
Fleet, and Beauchemin 1994; Mitiche and Bouthemy 1996; Stiller and Konrad 1999; Szeliski
2006a; Baker, Black, Lewis et al. 2007).

384 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

8.1 Translational alignment

The simplest way to establish an alignment between two images or image patches is to shift
one image relative to the other. Given a remplate image Io(x) sampled at discrete pixel
locations {z; = (z;,y;)}, we wish to find where it is located in image I (x). A least squares
solution to this problem is to find the minimum of the sum of squared differences (SSD)
function
Essp(u) = Y [z +u) — Io(z:))]> =) e}, (8.1)
i i

where u = (u,v) is the displacement and e; = I (x; + u) — Iy(x;) is called the residual
error (or the displaced frame difference in the video coding literature).! (We ignore for the
moment the possibility that parts of Iy may lie outside the boundaries of I; or be otherwise
not visible.) The assumption that corresponding pixel values remain the same in the two
images is often called the brightness constancy constraint.>

In general, the displacement w can be fractional, so a suitable interpolation function must
be applied to image I («). In practice, a bilinear interpolant is often used but bicubic inter-
polation can yield slightly better results (Szeliski and Scharstein 2004). Color images can be
processed by summing differences across all three color channels, although it is also possible
to first transform the images into a different color space or to only use the luminance (which
is often done in video encoders).

Robust error metrics. We can make the above error metric more robust to outliers by re-
placing the squared error terms with a robust function p(e;) (Huber 1981; Hampel, Ronchetti,
Rousseeuw et al. 1986; Black and Anandan 1996; Stewart 1999) to obtain

Esrp(u) = Zp(h(wi +u) — Ip(x;)) = Zp(ei)- 8.2)

The robust norm p(e) is a function that grows less quickly than the quadratic penalty associ-
ated with least squares. One such function, sometimes used in motion estimation for video
coding because of its speed, is the sum of absolute differences (SAD) metric’ or L; norm,
ie.,

Esap(u) = Y |L(@i +u) — Io(@:)| =) |eil. (8.3)

% %

! The usual justification for using least squares is that it is the optimal estimate with respect to Gaussian noise.
See the discussion below on robust error metrics as well as Appendix B.3.

2 Brightness constancy (Horn 1974) is the tendency for objects to maintain their perceived brightness under
varying illumination conditions.

3 In video compression, e.g., the H.264 standard (http://www.itu.int/rec/T-REC-H.264), the sum of absolute trans-
formed differences (SATD), which measures the differences in a frequency transform space, e.g., using a Hadamard
transform, is often used since it more accurately predicts quality (Richardson 2003).

http://www.itu.int/rec/T-REC-H.264

8.1 Translational alignment 385

However, since this function is not differentiable at the origin, it is not well suited to gradient-
descent approaches such as the ones presented in Section 8.1.3.

Instead, a smoothly varying function that is quadratic for small values but grows more
slowly away from the origin is often used. Black and Rangarajan (1996) discuss a variety of
such functions, including the Geman—McClure function,

IQ

o 4
ey (8.4)

pem(T)

where a is a constant that can be thought of as an outlier threshold. An appropriate value for
the threshold can itself be derived using robust statistics (Huber 1981; Hampel, Ronchetti,
Rousseeuw et al. 1986; Rousseeuw and Leroy 1987), e.g., by computing the median absolute
deviation, MAD = med,|e;
standard deviation of the inlier noise process (Stewart 1999).

, and multiplying it by 1.4 to obtain a robust estimate of the

Spatially varying weights. The error metrics above ignore that fact that for a given align-
ment, some of the pixels being compared may lie outside the original image boundaries.
Furthermore, we may want to partially or completely downweight the contributions of cer-
tain pixels. For example, we may want to selectively “erase” some parts of an image from
consideration when stitching a mosaic where unwanted foreground objects have been cut out.
For applications such as background stabilization, we may want to downweight the middle
part of the image, which often contains independently moving objects being tracked by the
camera.

All of these tasks can be accomplished by associating a spatially varying per-pixel weight
value with each of the two images being matched. The error metric then becomes the
weighted (or windowed) SSD function,

Ewssp(u) = Z wo () w (5 4+ w) Iy (x; + w) — Io(x;)]%, (8.5)

K2

where the weighting functions wg and w; are zero outside the image boundaries.

If a large range of potential motions is allowed, the above metric can have a bias towards
smaller overlap solutions. To counteract this bias, the windowed SSD score can be divided
by the overlap area

to compute a per-pixel (or mean) squared pixel error Ewssp/A. The square root of this
quantity is the root mean square intensity error

RMS = /BEwssp/A (8.7)

often reported in comparative studies.

386 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Bias and gain (exposure differences). Often, the two images being aligned were not taken
with the same exposure. A simple model of linear (affine) intensity variation between the two
images is the bias and gain model,

L(z+u)=(14+a)ly(x) + B, (8.8)

where (is the bias and « is the gain (Lucas and Kanade 1981; Gennert 1988; Fuh and
Maragos 1991; Baker, Gross, and Matthews 2003; Evangelidis and Psarakis 2008). The least
squares formulation then becomes

Bpc(u) =Y [N(mi+u) — (1+a)lo(x:) — B = _[alo(@:) + B —ei]’. (8.9)

(2 K2

Rather than taking a simple squared difference between corresponding patches, it becomes
necessary to perform a linear regression (Appendix A.2), which is somewhat more costly.
Note that for color images, it may be necessary to estimate a different bias and gain for each
color channel to compensate for the automatic color correction performed by some digital
cameras (Section 2.3.2). Bias and gain compensation is also used in video codecs, where it is
known as weighted prediction (Richardson 2003).

A more general (spatially varying, non-parametric) model of intensity variation, which is
computed as part of the registration process, is used in (Negahdaripour 1998; Jia and Tang
2003; Seitz and Baker 2009). This can be useful for dealing with local variations such as
the vignetting caused by wide-angle lenses, wide apertures, or lens housings. It is also pos-
sible to pre-process the images before comparing their values, e.g., using band-pass filtered
images (Anandan 1989; Bergen, Anandan, Hanna et al. 1992), gradients (Scharstein 1994;
Papenberg, Bruhn, Brox et al. 2006), or using other local transformations such as histograms
or rank transforms (Cox, Roy, and Hingorani 1995; Zabih and Woodfill 1994), or to max-
imize mutual information (Viola and Wells III 1997; Kim, Kolmogorov, and Zabih 2003).
Hirschmiiller and Scharstein (2009) compare a number of these approaches and report on
their relative performance in scenes with exposure differences.

Correlation. An alternative to taking intensity differences is to perform correlation, i.e., to
maximize the product (or cross-correlation) of the two aligned images,

Eco(u) =Y Io(@:) i (z; +u). (8.10)

At first glance, this may appear to make bias and gain modeling unnecessary, since the images
will prefer to line up regardless of their relative scales and offsets. However, this is actually
not true. If a very bright patch exists in /7 (x), the maximum product may actually lie in that
area.

8.1 Translational alignment 387

For this reason, normalized cross-correlation is more commonly used,

>illo(:) — To] [(i + w) — 1]

ENcc(u): — —, (8.11)
V(@) — T2\ (i + w) — o
where
_ 1
Ip = N;IO(J;Z-) and (8.12)
— 1
I, = NZIl(wi—i—u) (8.13)

are the mean images of the corresponding patches and NV is the number of pixels in the patch.
The normalized cross-correlation score is always guaranteed to be in the range [—1, 1], which
makes it easier to handle in some higher-level applications, such as deciding which patches
truly match. Normalized correlation works well when matching images taken with different
exposures, e.g., when creating high dynamic range images (Section 10.2). Note, however,
that the NCC score is undefined if either of the two patches has zero variance (and, in fact, its
performance degrades for noisy low-contrast regions).

A variant on NCC, which is related to the bias—gain regression implicit in the matching
score (8.9), is the normalized SSD score

£ [[Io() Io] = [I (% +u) — 1]
NSSD 2 —
¢z L2 + I (i +u) — Ty

recently proposed by Criminisi, Shotton, Blake ef al. (2007). In their experiments, they find

2
(8.14)
2

that it produces comparable results to NCC, but is more efficient when applied to a large
number of overlapping patches using a moving average technique (Section 3.2.2).

8.1.1 Hierarchical motion estimation

Now that we have a well-defined alignment cost function to optimize, how can we find its
minimum? The simplest solution is to do a full search over some range of shifts, using ei-
ther integer or sub-pixel steps. This is often the approach used for block matching in motion
compensated video compression, where a range of possible motions (say, =16 pixels) is ex-
plored.*

To accelerate this search process, hierarchical motion estimation is often used: an image
pyramid (Section 3.5) is constructed and a search over a smaller number of discrete pixels

4 In stereo matching (Section 11.1.2), an explicit search over all possible disparities (i.e., a plane sweep) is almost
always performed, since the number of search hypotheses is much smaller due to the 1D nature of the potential
displacements.

388 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(corresponding to the same range of motion) is first performed at coarser levels (Quam 1984;
Anandan 1989; Bergen, Anandan, Hanna ef al. 1992). The motion estimate from one level
of the pyramid is then used to initialize a smaller local search at the next finer level. Al-
ternatively, several seeds (good solutions) from the coarse level can be used to initialize the
fine-level search. While this is not guaranteed to produce the same result as a full search, it
usually works almost as well and is much faster.
More formally, let
I (@;) — I (2a;) (8.15)

be the decimated image at level [obtained by subsampling (downsampling) a smoothed ver-
sion of the image at level [—1. See Section 3.5 for how to perform the required downsampling
(pyramid construction) without introducing too much aliasing.

At the coarsest level, we search for the best displacement u® that minimizes the dif-

ference between images I(gl)

and Il(l). This is usually done using a full search over some
range of displacements u!) € 27/[—S, S]2, where S is the desired search range at the finest
(original) resolution level, optionally followed by the incremental refinement step described
in Section 8.1.3.

Once a suitable motion vector has been estimated, it is used to predict a likely displace-
ment

2D 9 ® (8.16)

for the next finer level.’ The search over displacements is then repeated at the finer level over
a much narrower range of displacements, say al=Y £, again optionally combined with an
incremental refinement step (Anandan 1989). Alternatively, one of the images can be warped
(resampled) by the current motion estimate, in which case only small incremental motions
need to be computed at the finer level. A nice description of the whole process, extended to
parametric motion estimation (Section 8.2), is provided by Bergen, Anandan, Hanna et al.
(1992).

8.1.2 Fourier-based alignment

When the search range corresponds to a significant fraction of the larger image (as is the case
in image stitching, see Chapter 9), the hierarchical approach may not work that well, since
it is often not possible to coarsen the representation too much before significant features are
blurred away. In this case, a Fourier-based approach may be preferable.

5 This doubling of displacements is only necessary if displacements are defined in integer pixel coordinates,
which is the usual case in the literature (Bergen, Anandan, Hanna et al. 1992). If normalized device coordinates
(Section 2.1.5) are used instead, the displacements (and search ranges) need not change from level to level, although
the step sizes will need to be adjusted, to keep search steps of roughly one pixel.

8.1 Translational alignment 389

Fourier-based alignment relies on the fact that the Fourier transform of a shifted signal
has the same magnitude as the original signal but a linearly varying phase (Section 3.4), i.e.,

Fl{Li(x+u)} =F{L(x) e 7" =T (w)e I, (8.17)

where w is the vector-valued angular frequency of the Fourier transform and we use cal-
ligraphic notation 73 (w) = F {I;(x)} to denote the Fourier transform of a signal (Sec-
tion 3.4).

Another useful property of Fourier transforms is that convolution in the spatial domain
corresponds to multiplication in the Fourier domain (Section 3.4).° Thus, the Fourier trans-
form of the cross-correlation function Ecc can be written as

F{Ecc(u)} = 7{2 Io(zi) 11 (i + u)} = F{lo(u)*l1(u)} = To(w)Zi(w), (8.18)

where

flu)rg(u) = Z flxi)g(zi +u) (8.19)

is the correlation function, i.e., the convolution of one signal with the reverse of the other,
and 77 (w) is the complex conjugate of Z; (w). This is because convolution is defined as the
summation of one signal with the reverse of the other (Section 3.4).

Thus, to efficiently evaluate Ecc over the range of all possible values of u, we take the
Fourier transforms of both images Iy(x) and I; (x), multiply both transforms together (after
conjugating the second one), and take the inverse transform of the result. The Fast Fourier
Transform algorithm can compute the transform of an N x M image in O(NM log NM)
operations (Bracewell 1986). This can be significantly faster than the O(/N?M?) operations
required to do a full search when the full range of image overlaps is considered.

While Fourier-based convolution is often used to accelerate the computation of image
correlations, it can also be used to accelerate the sum of squared differences function (and its
variants). Consider the SSD formula given in (8.1). Its Fourier transform can be written as

3

F{Essp(u)} = f{Z[Il(fBi+u)—IO(ﬂfi)]2}

§(w) > 13 (@:) + I} (:)] — 2Zo(w) T} (w). (8.20)

i
Thus, the SSD function can be computed by taking twice the correlation function and sub-
tracting it from the sum of the energies in the two images.

6 In fact, the Fourier shift property (8.17) derives from the convolution theorem by observing that shifting is
equivalent to convolution with a displaced delta function § (& —).

390 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Windowed correlation. Unfortunately, the Fourier convolution theorem only applies when
the summation over x; is performed over all the pixels in both images, using a circular shift
of the image when accessing pixels outside the original boundaries. While this is acceptable
for small shifts and comparably sized images, it makes no sense when the images overlap by
a small amount or one image is a small subset of the other.

In that case, the cross-correlation function should be replaced with a windowed (weighted)
cross-correlation function,

Fwcc(u) = Zwo(mi)lo(mi) wy (x5 + w) Iy (x; +), (8.21)

7

= [wo(®)lo(@))*[w: ()11 (2)] (8.22)

where the weighting functions wy and w; are zero outside the valid ranges of the images
and both images are padded so that circular shifts return O values outside the original image
boundaries.

An even more interesting case is the computation of the weighted SSD function intro-
duced in Equation (8.5),

EWSSD(U) = Z wo(aci)wl(a:i + ’U,)[Il ((I)l + u) — Io((l?i)]Q. (8.23)

3

Expanding this as a sum of correlations and deriving the appropriate set of Fourier transforms
is left for Exercise 8.1.

The same kind of derivation can also be applied to the bias—gain corrected sum of squared
difference function Fpg (8.9). Again, Fourier transforms can be used to efficiently compute
all the correlations needed to perform the linear regression in the bias and gain parameters in
order to estimate the exposure-compensated difference for each potential shift (Exercise 8.1).

Phase correlation. A variant of regular correlation (8.18) that is sometimes used for motion
estimation is phase correlation (Kuglin and Hines 1975; Brown 1992). Here, the spectrum of
the two signals being matched is whitened by dividing each per-frequency product in (8.18)
by the magnitudes of the Fourier transforms,
Zo(w)Ii (w)
F{Epc(u)} = (8.24)
1 Zo (@) Z2(w)]]

before taking the final inverse Fourier transform. In the case of noiseless signals with perfect
(cyclic) shift, we have I; (x + u) = Ip(x) and hence, from Equation (8.17), we obtain

Flh(x+u)} = Tj(w)e ™" =Ty(w) and
F{Epc(u)} = e 2mwe, (8.25)

8.1 Translational alignment 391

The output of phase correlation (under ideal conditions) is therefore a single spike (impulse)
located at the correct value of w, which (in principle) makes it easier to find the correct
estimate.

Phase correlation has a reputation in some quarters of outperforming regular correlation,
but this behavior depends on the characteristics of the signals and noise. If the original images
are contaminated by noise in a narrow frequency band (e.g., low-frequency noise or peaked
frequency “hum”), the whitening process effectively de-emphasizes the noise in these regions.
However, if the original signals have very low signal-to-noise ratio at some frequencies (say,
two blurry or low-textured images with lots of high-frequency noise), the whitening process
can actually decrease performance (see Exercise 8.1).

Recently, gradient cross-correlation has emerged as a promising alternative to phase cor-
relation (Argyriou and Vlachos 2003), although further systematic studies are probably war-
ranted. Phase correlation has also been studied by Fleet and Jepson (1990) as a method for
estimating general optical flow and stereo disparity.

Rotations and scale. While Fourier-based alignment is mostly used to estimate transla-
tional shifts between images, it can, under certain limited conditions, also be used to estimate
in-plane rotations and scales. Consider two images that are related purely by rotation, i.e.,

I (Rx) = Iy(x). (8.26)
If we re-sample the images into polar coordinates,
Io(r,0) = Iy(rcos®,rsinf) and I,(r,0) = I(rcos 6, rsin), (8.27)

we obtain
L (r,0 + 6) = Io(r,0). (8.28)

The desired rotation can then be estimated using a Fast Fourier Transform (FFT) shift-based
technique.
If the two images are also related by a scale,

I(e’Rx) = Iy(x), (8.29)
we can re-sample into log-polar coordinates,
Io(s,0) = Io(e* cosB,e*sin®) and I,(s,0) = I,(e® cosh,e®sinb), (8.30)

to obtain
Ii(s+ 3,0 +6) = Iy(s, 0). (8.31)

392 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 8.2 Taylor series approximation of a function and the incremental computation of
the optical flow correction amount. J1(x; +) is the image gradient at (x; + u) and e; is
the current intensity difference.

In this case, care must be taken to choose a suitable range of s values that reasonably samples
the original image.

For images that are also translated by a small amount,
Li(e*Rx +t) = Iy(x), (8.32)

De Castro and Morandi (1987) propose an ingenious solution that uses several steps to esti-
mate the unknown parameters. First, both images are converted to the Fourier domain and
only the magnitudes of the transformed images are retained. In principle, the Fourier mag-
nitude images are insensitive to translations in the image plane (although the usual caveats
about border effects apply). Next, the two magnitude images are aligned in rotation and scale
using the polar or log-polar representations. Once rotation and scale are estimated, one of the
images can be de-rotated and scaled and a regular translational algorithm can be applied to
estimate the translational shift.

Unfortunately, this trick only applies when the images have large overlap (small transla-
tional motion). For more general motion of patches or images, the parametric motion estima-
tor described in Section 8.2 or the feature-based approaches described in Section 6.1 need to
be used.

8.1.3 Incremental refinement

The techniques described up till now can estimate alignment to the nearest pixel (or poten-
tially fractional pixel if smaller search steps are used). In general, image stabilization and
stitching applications require much higher accuracies to obtain acceptable results.

To obtain better sub-pixel estimates, we can use one of several techniques described by
Tian and Huhns (1986). One possibility is to evaluate several discrete (integer or fractional)
values of (u,v) around the best value found so far and to interpolate the matching score to
find an analytic minimum.

8.1 Translational alignment 393

A more commonly used approach, first proposed by Lucas and Kanade (1981), is to
perform gradient descent on the SSD energy function (8.1), using a Taylor series expansion
of the image function (Figure 8.2),

Eik-ssp(u+Au) = > [L(x; +u+ Au) — Io(z;)]? (8.33)

)

~ Z[Il (x; +u) + Jq(x; +u)Au — Io(x;)]* (8.34)

i

= > [Ji(@i + w)Au+], (8.35)
where o oI
Ji(@i +u) = VI +u) = (5 87;)(@ +u) (8.36)
is the image gradient or Jacobian at (x; + u) and
€, = Il (QZZ + u) — IQ((ZIZ'), (837)

first introduced in (8.1), is the current intensity error.” The gradient at a particular sub-pixel
location (x; + w) can be computed using a variety of techniques, the simplest of which is
to simply take the horizontal and vertical differences between pixels and = + (1,0) or
x + (0,1). More sophisticated derivatives can sometimes lead to noticeable performance
improvements.

The linearized form of the incremental update to the SSD error (8.35) is often called the
optical flow constraint or brightness constancy constraint equation

Lou+ I+ 1 =0, (8.38)

where the subscripts in I, and I, denote spatial derivatives, and I; is called the temporal
derivative, which makes sense if we are computing instantaneous velocity in a video se-
quence. When squared and summed or integrated over a region, it can be used to compute
optic flow (Horn and Schunck 1981).
The above least squares problem (8.35) can be minimized by solving the associated nor-
mal equations (Appendix A.2),
AAu=1> (8.39)

where
A= Tl (i +u)Ji(z; +u) (8.40)

7 We follow the convention, commonly used in robotics and by Baker and Matthews (2004), that derivatives with
respect to (column) vectors result in row vectors, so that fewer transposes are needed in the formulas.

394 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

and
b=-> eJi(z;+u) (8.41)

are called the (Gauss—Newton approximation of the) Hessian and gradient-weighted residual
vector, respectively.® These matrices are also often written as

2 LI LI
A—lzzlﬂ} EZIQy] and b——[%llﬂ. (8.42)
Yy Y Yy

The gradients required for J1(x; + u) can be evaluated at the same time as the image
warps required to estimate I (; + u) (Section 3.6.1 (3.89)) and, in fact, are often computed
as a side-product of image interpolation. If efficiency is a concern, these gradients can be
replaced by the gradients in the femplate image,

since near the correct alignment, the template and displaced target images should look sim-
ilar. This has the advantage of allowing the pre-computation of the Hessian and Jacobian
images, which can result in significant computational savings (Hager and Belhumeur 1998;
Baker and Matthews 2004). A further reduction in computation can be obtained by writing
the warped image I («; + w) used to compute ¢; in (8.37) as a convolution of a sub-pixel
interpolation filter with the discrete samples in I; (Peleg and Rav-Acha 2006). Precomput-
ing the inner product between the gradient field and shifted version of I; allows the iterative
re-computation of e; to be performed in constant time (independent of the number of pixels).

The effectiveness of the above incremental update rule relies on the quality of the Taylor
series approximation. When far away from the true displacement (say, 1-2 pixels), several
iterations may be needed. It is possible, however, to estimate a value for J; using a least
squares fit to a series of larger displacements in order to increase the range of convergence
(Jurie and Dhome 2002) or to “learn” a special-purpose recognizer for a given patch (Avi-
dan 2001; Williams, Blake, and Cipolla 2003; Lepetit, Pilet, and Fua 2006; Hinterstoisser,
Benhimane, Navab ef al. 2008; C)zuysal, Calonder, Lepetit et al. 2010) as discussed in Sec-
tion 4.1.4.

A commonly used stopping criterion for incremental updating is to monitor the magnitude
of the displacement correction ||w|| and to stop when it drops below a certain threshold (say,
1/10 of a pixel). For larger motions, it is usual to combine the incremental update rule with a
hierarchical coarse-to-fine search strategy, as described in Section 8.1.1.

8 The true Hessian is the full second derivative of the error function E, which may not be positive definite—see
Section 6.1.3 and Appendix A.3.

8.1 Translational alignment 395

(b) (©)

Figure 8.3 Aperture problems for different image regions, denoted by the orange and red
L-shaped structures, overlaid in the same image to make it easier to diagram the flow. (a) A
window w(x;) centered at x; (black circle) can uniquely be matched to its corresponding
structure at x; + « in the second (red) image. (b) A window centered on the edge exhibits the
classic aperture problem, since it can be matched to a 1D family of possible locations. (c) In
a completely textureless region, the matches become totally unconstrained.

Conditioning and aperture problems. Sometimes, the inversion of the linear system (8.39)
can be poorly conditioned because of lack of two-dimensional texture in the patch being
aligned. A commonly occurring example of this is the aperture problem, first identified in
some of the early papers on optical flow (Horn and Schunck 1981) and then studied more ex-
tensively by Anandan (1989). Consider an image patch that consists of a slanted edge moving
to the right (Figure 8.3). Only the normal component of the velocity (displacement) can be
reliably recovered in this case. This manifests itself in (8.39) as a rank-deficient matrix A,
i.e., one whose smaller eigenvalue is very close to zero.’

When Equation (8.39) is solved, the component of the displacement along the edge is very
poorly conditioned and can result in wild guesses under small noise perturbations. One way
to mitigate this problem is to add a prior (soft constraint) on the expected range of motions
(Simoncelli, Adelson, and Heeger 1991; Baker, Gross, and Matthews 2004; Govindu 2006).
This can be accomplished by adding a small value to the diagonal of A, which essentially
biases the solution towards smaller Aw values that still (mostly) minimize the squared error.

However, the pure Gaussian model assumed when using a simple (fixed) quadratic prior,
as in (Simoncelli, Adelson, and Heeger 1991), does not always hold in practice, e.g., because
of aliasing along strong edges (Triggs 2004). For this reason, it may be prudent to add some
small fraction (say, 5%) of the larger eigenvalue to the smaller one before doing the matrix
inversion.

9The matrix A is by construction always guaranteed to be symmetric positive semi-definite, i.e., it has real
non-negative eigenvalues.

396 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a)

(©)

Figure 8.4 SSD surfaces corresponding to three locations (red crosses) in an image:
(a) highly textured area, strong minimum, low uncertainty; (b) strong edge, aperture prob-
lem, high uncertainty in one direction; (c) weak texture, no clear minimum, large uncertainty.

8.1 Translational alignment 397

Uncertainty modeling. The reliability of a particular patch-based motion estimate can be
captured more formally with an uncertainty model. The simplest such model is a covariance
matrix, which captures the expected variance in the motion estimate in all possible directions.
As discussed in Section 6.1.4 and Appendix B.6, under small amounts of additive Gaussian
noise, it can be shown that the covariance matrix Yq, is proportional to the inverse of the
Hessian A,

Yu=02A"", (8.44)

where afL is the variance of the additive Gaussian noise (Anandan 1989; Matthies, Kanade,
and Szeliski 1989; Szeliski 1989).

For larger amounts of noise, the linearization performed by the Lucas—Kanade algorithm
in (8.35) is only approximate, so the above quantity becomes a Cramer—Rao lower bound on
the true covariance. Thus, the minimum and maximum eigenvalues of the Hessian A can now
be interpreted as the (scaled) inverse variances in the least-certain and most-certain directions
of motion. (A more detailed analysis using a more realistic model of image noise is given by
Steele and Jaynes (2005).) Figure 8.4 shows the local SSD surfaces for three different pixel
locations in an image. As you can see, the surface has a clear minimum in the highly textured
region and suffers from the aperture problem near the strong edge.

Bias and gain, weighting, and robust error metrics. The Lucas—Kanade update rule can
also be applied to the bias—gain equation (8.9) to obtain

Erx_pe(u+ Au) = Z[Jl(wi +u)Au + e; — aly(z;) — G)? (8.45)

?

(Lucas and Kanade 1981; Gennert 1988; Fuh and Maragos 1991; Baker, Gross, and Matthews
2003). The resulting 4 x 4 system of equations can be solved to simultaneously estimate the
translational displacement update Aw and the bias and gain parameters 3 and «.

A similar formulation can be derived for images (templates) that have a linear appearance
variation,

Lz +u) = Io(z) + >\ Bj(w), (8.46)
J

where the B;(x) are the basis images and the \; are the unknown coefficients (Hager and
Belhumeur 1998; Baker, Gross, Ishikawa et al. 2003; Baker, Gross, and Matthews 2003).
Potential linear appearance variations include illumination changes (Hager and Belhumeur
1998) and small non-rigid deformations (Black and Jepson 1998).

A weighted (windowed) version of the Lucas—Kanade algorithm is also possible:

Erx_wssp(u + Au) = Z wo(xx;)wi (2 + w) [T (x5 + u)Au + e;]?. (8.47)

K2

398 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Note that here, in deriving the Lucas—Kanade update from the original weighted SSD function
(8.5), we have neglected taking the derivative of the w;(x; + u) weighting function with
respect to u, which is usually acceptable in practice, especially if the weighting function is a
binary mask with relatively few transitions.

Baker, Gross, Ishikawa et al. (2003) only use the wq () term, which is reasonable if the
two images have the same extent and no (independent) cutouts in the overlap region. They
also discuss the idea of making the weighting proportional to VI (x), which helps for very
noisy images, where the gradient itself is noisy. Similar observations, formulated in terms
of total least squares (Van Huffel and Vandewalle 1991; Van Huffel and Lemmerling 2002),
have been made by other researchers studying optical flow (Weber and Malik 1995; Bab-
Hadiashar and Suter 1998b; Miihlich and Mester 1998). Lastly, Baker, Gross, Ishikawa et al.
(2003) show how evaluating Equation (8.47) at just the most reliable (highest gradient) pixels
does not significantly reduce performance for large enough images, even if only 5-10% of
the pixels are used. (This idea was originally proposed by Dellaert and Collins (1999), who
used a more sophisticated selection criterion.)

The Lucas—Kanade incremental refinement step can also be applied to the robust error
metric introduced in Section 8.1,

Erk-srp(u+ Au) =Y p(J1 (i + u)Au+¢;), (8.48)

which can be solved using the iteratively reweighted least squares technique described in
Section 6.1.4.

8.2 Parametric motion

Many image alignment tasks, for example image stitching with handheld cameras, require
the use of more sophisticated motion models, as described in Section 2.1.2. Since these
models, e.g., affine deformations, typically have more parameters than pure translation, a
full search over the possible range of values is impractical. Instead, the incremental Lucas—
Kanade algorithm can be generalized to parametric motion models and used in conjunction
with a hierarchical search algorithm (Lucas and Kanade 1981; Rehg and Witkin 1991; Fuh
and Maragos 1991; Bergen, Anandan, Hanna et al. 1992; Shashua and Toelg 1997; Shashua
and Wexler 2001; Baker and Matthews 2004).

For parametric motion, instead of using a single constant translation vector u, we use
a spatially varying motion field or correspondence map, x'(x; p), parameterized by a low-
dimensional vector p, where &’ can be any of the motion models presented in Section 2.1.2.

8.2 Parametric motion 399

The parametric incremental motion update rule now becomes

Erk-—pm(p+Ap) = Z[h(ﬂ?/(mﬁp + Ap)) — Io(w;)]? (3.49)
~ Y [L(@) + Ji(@)Ap - ()] (8.50)
= D [Ni(@)Ap + el @.51)

i
where the Jacobian is now

oI ox'

Ji(z) = =% = VI (2})—(x:), 8.52
(al) = G = Vi) G (@) (852)
i.e., the product of the image gradient VI; with the Jacobian of the correspondence field,

J . = 0x' /Op.

The motion Jacobians J g for the 2D planar transformations introduced in Section 2.1.2
and Table 2.1 are given in Table 6.1. Note how we have re-parameterized the motion matrices
so that they are always the identity at the origin p = 0. This becomes useful later, when we
talk about the compositional and inverse compositional algorithms. (It also makes it easier to
impose priors on the motions.)

For parametric motion, the (Gauss—Newton) Hessian and gradient-weighted residual vec-
tor become

A= T [V (@) VI ()] Tz () (8.53)
i

and
b=—> Jp(@)[e:VI] (})]. (8.54)

Note how the expressions inside the square brackets are the same ones evaluated for the
simpler translational motion case (8.40-8.41).

Patch-based approximation. The computation of the Hessian and residual vectors for
parametric motion can be significantly more expensive than for the translational case. For
parametric motion with n parameters and N pixels, the accumulation of A and b takes
O(n?N) operations (Baker and Matthews 2004). One way to reduce this by a significant
amount is to divide the image up into smaller sub-blocks (patches) P; and to only accumulate
the simpler 2 x 2 quantities inside the square brackets at the pixel level (Shum and Szeliski
2000),

A; = > VI () V() (8.55)
iep;
by = Y eVI(x)). (8.56)

i€P;

400 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

The full Hessian and residual can then be approximated as

ArDTh(&)>) VI (@) V()| T (25) ZJT,) AT (&) (8.57)

i€ P;

and

ZJ (@) >_ eVIT (@) = = Ja(&;)b;, (8.58)
J

i€ P;

where &; is the center of each patch P; (Shum and Szeliski 2000). This is equivalent to
replacing the true motion Jacobian with a piecewise-constant approximation. In practice,
this works quite well. The relationship of this approximation to feature-based registration is
discussed in Section 9.2.4.

Compositional approach. For a complex parametric motion such as a homography, the
computation of the motion Jacobian becomes complicated and may involve a per-pixel divi-
sion. Szeliski and Shum (1997) observed that this can be simplified by first warping the target
image I; according to the current motion estimate x’(x; p),

Li(z) = (2 (z; p)), (8.59)

and then comparing this warped image against the template Iy(x),

Erx_ss(Ap) = Z[fl(i(fl?i; Ap)) — Io(z;))? (8.60)
~ Z[jl(wi)Ap + ei]? (8.61)
=) [VL(:)J g(w:)Ap + €] (8.62)

i
Note that since the two images are assumed to be fairly similar, only an incremental para-
metric motion is required, i.e., the incremental motion can be evaluated around p = 0, which
can lead to considerable simplifications. For example, the Jacobian of the planar projective
transform (6.19) now becomes

Oz

Jgp= =

(8.63)
P |p—o

7xy1000—x2—a:y
1000z oy 1 —ay —3?

Once the incremental motion & has been computed, it can be prepended to the previously
estimated motion, which is easy to do for motions represented with transformation matrices,
such as those given in Tables 2.1 and 6.1. Baker and Matthews (2004) call this the forward
compositional algorithm, since the target image is being re-warped and the final motion esti-
mates are being composed.

8.2 Parametric motion 401

If the appearance of the warped and template images is similar enough, we can replace
the gradient of I, (x) with the gradient of Iy(zx), as suggested previously (8.43). This has po-
tentially a big advantage in that it allows the pre-computation (and inversion) of the Hessian
matrix A given in Equation (8.53). The residual vector b (8.54) can also be partially precom-
puted, i.e., the steepest descent images VIy(x)J 3 (x) can precomputed and stored for later
multiplication with the e(x) = I, () — Io(a) error images (Baker and Matthews 2004). This
idea was first suggested by Hager and Belhumeur (1998) in what Baker and Matthews (2004)
call a inverse additive scheme.

Baker and Matthews (2004) introduce one more variant they call the inverse composi-
tional algorithm. Rather than (conceptually) re-warping the warped target image I (), they
instead warp the template image Io(z) and minimize

Bux-pu(Ap) = Y [h(m) — Io(@(xi; Ap)))® (8.64)

%

~ Y [VIo(@:)d g (@) Ap — €] (8.65)

%

This is identical to the forward warped algorithm (8.62) with the gradients V1, () replaced
by the gradients VI, (), except for the sign of e;. The resulting update Ap is the negative of
the one computed by the modified Equation (8.62) and hence the inverse of the incremental
transformation must be prepended to the current transform. Because the inverse composi-
tional algorithm has the potential of pre-computing the inverse Hessian and the steepest de-
scent images, this makes it the preferred approach of those surveyed by Baker and Matthews
(2004). Figure 8.5 (Baker, Gross, Ishikawa et al. 2003) beautifully shows all of the steps
required to implement the inverse compositional algorithm.

Baker and Matthews (2004) also discuss the advantage of using Gauss—Newton iteration
(i.e., the first-order expansion of the least squares, as above) compared to other approaches
such as steepest descent and Levenberg—Marquardt. Subsequent parts of the series (Baker,
Gross, Ishikawa et al. 2003; Baker, Gross, and Matthews 2003, 2004) discuss more advanced
topics such as per-pixel weighting, pixel selection for efficiency, a more in-depth discussion of
robust metrics and algorithms, linear appearance variations, and priors on parameters. They
make for invaluable reading for anyone interested in implementing a highly tuned imple-
mentation of incremental image registration. Evangelidis and Psarakis (2008) provide some
detailed experimental evaluations of these and other related approaches.

8.2.1 Application: Video stabilization

Video stabilization is one of the most widely used applications of parametric motion esti-
mation (Hansen, Anandan, Dana et al. 1994; Irani, Rousso, and Peleg 1997; Morimoto and

402 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Template
=i
T(x)

Warp Parameters Template Gradients Jacobian

m: .

W
VT, VT, 3
Parameter Updates
Inverse Hessian
mg D -
e el

Hessia

Steepest Descent Images

H

| ¥, f (]
‘ Py
VI
SD Parameter Updates
- I

HWxp)-Tx _
S [VTEE[1{W(x: p)) - T(x)]

Figure 8.5 A schematic overview of the inverse compositional algorithm (copied, with
permission, from (Baker, Gross, Ishikawa et al. 2003)). Steps 3—6 (light-colored arrows) are
performed once as a pre-computation. The main algorithm simply consists of iterating: image
warping (Step 1), image differencing (Step 2), image dot products (Step 7), multiplication
with the inverse of the Hessian (Step 8), and the update to the warp (Step 9). All of these
steps can be performed efficiently.

8.2 Parametric motion 403

Chellappa 1997; Srinivasan, Chellappa, Veeraraghavan et al. 2005). Algorithms for stabiliza-
tion run inside both hardware devices, such as camcorders and still cameras, and software
packages for improving the visual quality of shaky videos.

In their paper on full-frame video stabilization, Matsushita, Ofek, Ge et al. (2006) give
a nice overview of the three major stages of stabilization, namely motion estimation, motion
smoothing, and image warping. Motion estimation algorithms often use a similarity trans-
form to handle camera translations, rotations, and zooming. The tricky part is getting these
algorithms to lock onto the background motion, which is a result of the camera movement,
without getting distracted by independent moving foreground objects. Motion smoothing al-
gorithms recover the low-frequency (slowly varying) part of the motion and then estimate
the high-frequency shake component that needs to be removed. Finally, image warping algo-
rithms apply the high-frequency correction to render the original frames as if the camera had
undergone only the smooth motion.

The resulting stabilization algorithms can greatly improve the appearance of shaky videos
but they often still contain visual artifacts. For example, image warping can result in missing
borders around the image, which must be cropped, filled using information from other frames,
or hallucinated using inpainting techniques (Section 10.5.1). Furthermore, video frames cap-
tured during fast motion are often blurry. Their appearance can be improved either using
deblurring techniques (Section 10.3) or stealing sharper pixels from other frames with less
motion or better focus (Matsushita, Ofek, Ge er al. 2006). Exercise 8.3 has you implement
and test some of these ideas.

In situations where the camera is translating a lot in 3D, e.g., when the videographer is
walking, an even better approach is to compute a full structure from motion reconstruction
of the camera motion and 3D scene. A smooth 3D camera path can then be computed and
the original video re-rendered using view interpolation with the interpolated 3D point cloud
serving as the proxy geometry while preserving salient features (Liu, Gleicher, Jin et al.
2009). If you have access to a camera array instead of a single video camera, you can do even
better using a light field rendering approach (Section 13.3) (Smith, Zhang, Jin et al. 2009).

8.2.2 Learned motion models

An alternative to parameterizing the motion field with a geometric deformation such as an
affine transform is to learn a set of basis functions tailored to a particular application (Black,
Yacoob, Jepson et al. 1997). First, a set of dense motion fields (Section 8.4) is computed from
a set of training videos. Next, singular value decomposition (SVD) is applied to the stack of
motion fields u;(x) to compute the first few singular vectors v (). Finally, for a new test
sequence, a novel flow field is computed using a coarse-to-fine algorithm that estimates the

404 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Walk-2 (Training Seq |II)
200

n /
|r1r|H?

—-

200 ._‘-' 5.

Walk-4 (Test Sequence) e

200 "| |1 T i ,r ﬂ ﬂl £ | ad

I,|||IIIJ ||Ihlllhlf'f|f'_
lwl ||Il ||1|.

24
T { 1
200 l.' i l' .l V 'J lv' J h‘
100 150 200 frame

A.A._LAA.

1 0 100 150 2060

(@) (b)

Figure 8.6 Learned parameterized motion fields for a walking sequence (Black, Yacoob,
Jepson et al. 1997) (©) 1997 IEEE: (a) learned basis flow fields; (b) plots of motion coefficients
over time and corresponding estimated motion fields.

unknown coefficient ay, in the parameterized flow field

x) = Z arvi(x). (8.66)
k

Figure 8.6a shows a set of basis fields learned by observing videos of walking motions.
Figure 8.6b shows the temporal evolution of the basis coefficients as well as a few of the
recovered parametric motion fields. Note that similar ideas can also be applied to feature
tracks (Torresani, Hertzmann, and Bregler 2008), which is a topic we discuss in more detail
in Sections 4.1.4 and 12.6.4.

8.3 Spline-based motion

While parametric motion models are useful in a wide variety of applications (such as video
stabilization and mapping onto planar surfaces), most image motion is too complicated to be
captured by such low-dimensional models.

Traditionally, optical flow algorithms (Section 8.4) compute an independent motion esti-
mate for each pixel, i.e., the number of flow vectors computed is equal to the number of input
pixels. The general optical flow analog to Equation (8.1) can thus be written as

ESSDfoF({Ui}) = Z[Il (:BZ + Uz) - Io(il:i)]2. (8.67)

i

8.3 Spline-based motion 405

T T T

Figure 8.7 Spline motion field: the displacement vectors w; = (u;, v;) are shown as pluses
(+) and are controlled by the smaller number of control vertices it; = (u;,;), which are
shown as circles (o).

Notice how in the above equation, the number of variables {u;} is twice the number of
measurements, so the problem is underconstrained.

The two classic approaches to this problem, which we study in Section 8.4, are to perform
the summation over overlapping regions (the patch-based or window-based approach) or to
add smoothness terms on the {u;} field using regularization or Markov random fields (Sec-
tion 3.7). In this section, we describe an alternative approach that lies somewhere between
general optical flow (independent flow at each pixel) and parametric flow (a small number of
global parameters). The approach is to represent the motion field as a two-dimensional spline
controlled by a smaller number of control vertices {;} (Figure 8.7),

u; = Zﬁij(ﬂ%) = Zﬁjwi’j7 (868)
J J

where the B;(x;) are called the basis functions and are only non-zero over a small finite sup-
port interval (Szeliski and Coughlan 1997). We call the w;; = B;(x;) weights to emphasize
that the {u, } are known linear combinations of the {;}. Some commonly used spline basis
functions are shown in Figure 8.8.

Substituting the formula for the individual per-pixel flow vectors u,; (8.68) into the SSD
error metric (8.67) yields a parametric motion formula similar to Equation (8.50). The biggest
difference is that the Jacobian J () (8.52) now consists of the sparse entries in the weight
matrix W = [w;;].

In situations where we know something more about the motion field, e.g., when the mo-
tion is due to a camera moving in a static scene, we can use more specialized motion models.
For example, the plane plus parallax model (Section 2.1.5) can be naturally combined with
a spline-based motion representation, where the in-plane motion is represented by a homog-
raphy (6.19) and the out-of-plane parallax d is represented by a scalar variable at each spline

406 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

bilinear biquadratic

Figure 8.8 Sample spline basis functions (Szeliski and Coughlan 1997) (©) 1997 Springer.
The block (constant) interpolator/basis corresponds to block-based motion estimation
(Le Gall 1991). See Section 3.5.1 for more details on spline functions.

8.3 Spline-based motion 407

(a) (b) (d)

Figure 8.9 Quadtree spline-based motion estimation (Szeliski and Shum 1996) © 1996
IEEE: (a) quadtree spline representation, (b) which can lead to cracks, unless the white nodes
are constrained to depend on their parents; (c) deformed quadtree spline mesh overlaid on
grayscale image; (d) flow field visualized as a needle diagram.

control point (Szeliski and Kang 1995; Szeliski and Coughlan 1997).

In many cases, the small number of spline vertices results in a motion estimation problem
that is well conditioned. However, if large textureless regions (or elongated edges subject
to the aperture problem) persist across several spline patches, it may be necessary to add a
regularization term to make the problem well posed (Section 3.7.1). The simplest way to
do this is to directly add squared difference penalties between adjacent vertices in the spline
control mesh {; }, as in (3.100). If a multi-resolution (coarse-to-fine) strategy is being used,
it is important to re-scale these smoothness terms while going from level to level.

The linear system corresponding to the spline-based motion estimator is sparse and regu-
lar. Because it is usually of moderate size, it can often be solved using direct techniques such
as Cholesky decomposition (Appendix A.4). Alternatively, if the problem becomes too large
and subject to excessive fill-in, iterative techniques such as hierarchically preconditioned con-
jugate gradient (Szeliski 1990b, 2006b) can be used instead (Appendix A.5).

Because of its robustness, spline-based motion estimation has been used for a number
of applications, including visual effects (Roble 1999) and medical image registration (Sec-
tion 8.3.1) (Szeliski and Lavallée 1996; Kybic and Unser 2003).

One disadvantage of the basic technique, however, is that the model does a poor job
near motion discontinuities, unless an excessive number of nodes is used. To remedy this
situation, Szeliski and Shum (1996) propose using a quadtree representation embedded in the
spline control grid (Figure 8.9a). Large cells are used to present regions of smooth motion,
while smaller cells are added in regions of motion discontinuities (Figure 8.9c).

To estimate the motion, a coarse-to-fine strategy is used. Starting with a regular spline
imposed over a lower-resolution image, an initial motion estimate is obtained. Spline patches
where the motion is inconsistent, i.e., the squared residual (8.67) is above a threshold, are
subdivided into smaller patches. In order to avoid cracks in the resulting motion field (Fig-

408 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

Figure 8.10 Elastic brain registration (Kybic and Unser 2003) (©) 2003 IEEE: (a) original
brain atlas and patient MRI images overlaid in red—green; (b) after elastic registration with
eight user-specified landmarks (not shown); (c) a cubic B-spline deformation field, shown as
a deformed grid.

ure 8.9b), the values of certain nodes in the refined mesh, i.e., those adjacent to larger cells,
need to be restricted so that they depend on their parent values. This is most easily accom-
plished using a hierarchical basis representation for the quadtree spline (Szeliski 1990b) and
selectively setting some of the hierarchical basis functions to 0, as described in (Szeliski and
Shum 1996).

8.3.1 Application: Medical image registration

Because they excel at representing smooth elastic deformation fields, spline-based motion
models have found widespread use in medical image registration (Bajcsy and Kovacic 1989;
Szeliski and Lavallée 1996; Christensen, Joshi, and Miller 1997).'° Registration techniques
can be used both to track an individual patient’s development or progress over time (a lon-
gitudinal study) or to match different patient images together to find commonalities and de-
tect variations or pathologies (cross-sectional studies). When different imaging modalities
are being registered, e.g., computed tomography (CT) scans and magnetic resonance images
(MRI), mutual information measures of similarity are often necessary (Viola and Wells III
1997; Maes, Collignon, Vandermeulen et al. 1997).

Kybic and Unser (2003) provide a nice literature review and describe a complete working
system based on representing both the images and the deformation fields as multi-resolution
splines. Figure 8.10 shows an example of the Kybic and Unser system being used to register
a patient’s brain MRI with a labeled brain atlas image. The system can be run in a fully auto-

10 Tn computer graphics, such elastic volumetric deformation are known as free-form deformations (Sederberg and
Parry 1986; Coquillart 1990; Celniker and Gossard 1991).

8.4 Optical flow 409

() (b)

Figure 8.11 Octree spline-based image registration of two vertebral surface models (Szeliski
and Lavallée 1996) (© 1996 Springer: (a) after initial rigid alignment; (b) after elastic align-
ment; (c) a cross-section through the adapted octree spline deformation field.

matic mode but more accurate results can be obtained by locating a few key landmarks. More
recent papers on deformable medical image registration, including performance evaluations,
include (Klein, Staring, and Pluim 2007; Glocker, Komodakis, Tziritas et al. 2008).

As with other applications, regular volumetric splines can be enhanced using selective
refinement. In the case of 3D volumetric image or surface registration, these are known as
octree splines (Szeliski and Lavallée 1996) and have been used to register medical surface
models such as vertebrae and faces from different patients (Figure 8.11).

8.4 Optical flow

The most general (and challenging) version of motion estimation is to compute an indepen-
dent estimate of motion at each pixel, which is generally known as optical (or optic) flow. As
we mentioned in the previous section, this generally involves minimizing the brightness or
color difference between corresponding pixels summed over the image,

Essp-or({ui}) = Y [L(@i +u;) — Io(:))*. (8.69)
Since the number of variables {u;} is twice the number of measurements, the problem is
underconstrained. The two classic approaches to this problem are to perform the summa-
tion locally over overlapping regions (the patch-based or window-based approach) or to
add smoothness terms on the {u;} field using regularization or Markov random fields (Sec-
tion 3.7) and to search for a global minimum.
The patch-based approach usually involves using a Taylor series expansion of the dis-
placed image function (8.35) in order to obtain sub-pixel estimates (Lucas and Kanade 1981).

410 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Anandan (1989) shows how a series of local discrete search steps can be interleaved with
Lucas—Kanade incremental refinement steps in a coarse-to-fine pyramid scheme, which al-
lows the estimation of large motions, as described in Section 8.1.1. He also analyzes how the
uncertainty in local motion estimates is related to the eigenvalues of the local Hessian matrix
A; (8.44), as shown in Figures 8.3-8.4.

Bergen, Anandan, Hanna et al. (1992) develop a unified framework for describing both
parametric (Section 8.2) and patch-based optic flow algorithms and provide a nice introduc-
tion to this topic. After each iteration of optic flow estimation in a coarse-to-fine pyramid,
they re-warp one of the images so that only incremental flow estimates are computed (Sec-
tion 8.1.1). When overlapping patches are used, an efficient implementation is to first com-
pute the outer products of the gradients and intensity errors (8.40-8.41) at every pixel and
then perform the overlapping window sums using a moving average filter.'!

Instead of solving for each motion (or motion update) independently, Horn and Schunck
(1981) develop a regularization-based framework where (8.69) is simultaneously minimized
over all flow vectors {u;}. In order to constrain the problem, smoothness constraints, i.e.,
squared penalties on flow derivatives, are added to the basic per-pixel error metric. Because
the technique was originally developed for small motions in a variational (continuous func-
tion) framework, the linearized brightness constancy constraint corresponding to (8.35), i.e.,
(8.38), is more commonly written as an analytic integral

Fus = / (Lyu+ Iy + I)? dr dy, (8.70)

where (Il.,Iy) = VI = J; and I; = e; is the temporal derivative, i.e., the brightness
change between images. The Horn and Schunck model can also be viewed as the limiting
case of spline-based motion estimation as the splines become 1x1 pixel patches.

It is also possible to combine ideas from local and global flow estimation into a single
framework by using a locally aggregated (as opposed to single-pixel) Hessian as the bright-
ness constancy term (Bruhn, Weickert, and Schndrr 2005). Consider the discrete analog
(8.35) to the analytic global energy (8.70),

Busp = Y _u) [JiJ] Ju; + 2e;0] u; + €. (8.71)

3

If we replace the per-pixel (rank 1) Hessians A; = [J;J zT} and residuals b; = J;e; with area-
aggregated versions (8.40-8.41), we obtain a global minimization algorithm where region-
based brightness constraints are used.

Another extension to the basic optic flow model is to use a combination of global (para-
metric) and local motion models. For example, if we know that the motion is due to a camera

1 Other smoothing or aggregation filters can also be used at this stage (Bruhn, Weickert, and Schnorr 2005).

8.4 Optical flow 411

moving in a static scene (rigid motion), we can re-formulate the problem as the estimation of
a per-pixel depth along with the parameters of the global camera motion (Adiv 1989; Hanna
1991; Bergen, Anandan, Hanna et al. 1992; Szeliski and Coughlan 1997; Nir, Bruckstein,
and Kimmel 2008; Wedel, Cremers, Pock ef al. 2009). Such techniques are closely related to
stereo matching (Chapter 11). Alternatively, we can estimate either per-image or per-segment
affine motion models combined with per-pixel residual corrections (Black and Jepson 1996;
Ju, Black, and Jepson 1996; Chang, Tekalp, and Sezan 1997; Mémin and Pérez 2002). We
revisit this topic in Section 8.5.

Of course, image brightness may not always be an appropriate metric for measuring ap-
pearance consistency, e.g., when the lighting in an image is varying. As discussed in Sec-
tion 8.1, matching gradients, filtered images, or other metrics such as image Hessians (sec-
ond derivative measures) may be more appropriate. It is also possible to locally compute the
phase of steerable filters in the image, which is insensitive to both bias and gain transforma-
tions (Fleet and Jepson 1990). Papenberg, Bruhn, Brox et al. (2006) review and explore such
constraints and also provide a detailed analysis and justification for iteratively re-warping
images during incremental flow computation.

Because the brightness constancy constraint is evaluated at each pixel independently,
rather than being summed over patches where the constant flow assumption may be violated,
global optimization approaches tend to perform better near motion discontinuities. This is
especially true if robust metrics are used in the smoothness constraint (Black and Anandan
1996; Bab-Hadiashar and Suter 1998a).'> One popular choice for robust metrics in the L;
norm, also known as fotal variation (TV), which results in a convex energy whose global
minimum can be found (Bruhn, Weickert, and Schnorr 2005; Papenberg, Bruhn, Brox et
al. 2006). Anisotropic smoothness priors, which apply a different smoothness in the direc-
tions parallel and perpendicular to the image gradient, are another popular choice (Nagel and
Enkelmann 1986; Sun, Roth, Lewis er al. 2008; Werlberger, Trobin, Pock et al. 2009). It
is also possible to learn a set of better smoothness constraints (derivative filters and robust
functions) from a set of paired flow and intensity images (Sun, Roth, Lewis et al. 2008). Ad-
ditional details on some of these techniques are given by Baker, Black, Lewis er al. (2007)
and Baker, Scharstein, Lewis ef al. (2009).

Because of the large, two-dimensional search space in estimating flow, most algorithms
use variations of gradient descent and coarse-to-fine continuation methods to minimize the
global energy function. This contrasts starkly with stereo matching (which is an “easier”
one-dimensional disparity estimation problem), where combinatorial optimization techniques
have been the method of choice for the last decade.

Fortunately, combinatorial optimization methods based on Markov random fields are be-

12 Robust brightness metrics (Section 8.1, (8.2)) can also help improve the performance of window-based ap-
proaches (Black and Anandan 1996).

412 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Optical flow evaluation results Statistics: Average SD RO5 R10 R20 A50 A75 A95
Error type: endpoint angle interpolation normalized interpolation

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
endpoint {Hidden texture) | (Hidden texture) | (Hidden texturs) | (Hidden texturs) ic) ic) ic) (Sterec)
error avg GT im0 im1 GT im0 im1 GT im0 im1 GT im0 im1 GT im0 im1 GT imD im1 GT imb im1 GT imb im1

disc untext i 3 disc untext

Adaptive [20) 0.88 050 0 1373 079+

[OF [21) 0192 0.975 0123|087 w0 1.315 1.00 n|1.7820 1.737 uwumnuwz:nzzm 068: 1484 0955
Aniso. Huber-L1[22] 020+ 082+ 0135|084z 120z 0.702|0.391 1.231 0.281|01715 0.152 027 15| 0642 1362 079+
DPOF [13] | 0192 0.621 01511074+ 109+ 0.491| 0667 1801 0632|0187 017 11 0.3520| 0601 1.08+ 0.561
TV-L1-improved [17] | 7.2 0.091 0.261 0.07z|0.203 0.713 0.162 7 1189 022500217 1.2411 0112|090+ 1.31s 0.723]1.51141.9311 0.8411|0.18150.17 14 0.3117| 0.735 1622 0.877
CBF[12] 0.103 3 0.09+)0.341z 0.805 0.37 13 5 1.14s 0.135/0.90+ 1.27: 0.827|0.412 1.231 0.302|023220.19200.3921| 0.783 1.585 1.02s
Brox et al. [5] 84|0.115 0325 0.1112/ 0.279 0.9310 0.229| 0.39+ 0.94+ 0247|0249 1.2512 0.135)1.1013 1.39121.43 17| 0.89s 1.77s 0.557|0.102 0.13+ 0.1110.9111 1.83121.13 12
Rannacher [23] 85 0315 0094|0255 0.847 0.2135|0 12715 0265|0.249 13212 0135|0917 1.338 0.7231.49131.9513 0.783|0.1512 0.147 0.2613| 0.69¢ 1.58a 0.86s

&

€ 0153 0209|0681 1566 0662
015 0.16 12 0.34 13| 0.77 10 1.64 10 1.07 of

F-TV-L1[15] 88|014130351201415/0.34120981202611|0.59141.1910 0263|027
Second-order prior [8] | 9.0 (0115 0315 0094|0265 09310 0207057121251 0263|020« 1045 0123|0945 1345 0833|0615 19311 0.475|0
0

2731381501812/ 090+ 1305 0.766|054: 1626 0.364|01
el
115 03410 0102|0192 0692 0162|0292 0662 0235|020+ 11910 0143|1071 14213 12213|1.3510 1.495 0.8613|0
024

Fusion [5] 9.4 107 0.20 150,20 21 0.26 13| 1.07 12 2 07 15 1.39 15|
Dynamic MRF [7] 1.1]0.1 20 022+ 0.893 0.162|0.445 1.137 0202 0.245 1.2913 0143|1111 1.52+71.13 12| 1.54152.37 20 0.93 15| 0.13¢ 0.122 0.3117|1.27 15 2.33 20 1.66 17|
SegOF [10] 11.7} 0.57 15 1.16 15 0.59 19| 1.24120.8411/0.3215 0.862 0.2815|1.1817 1.50 15 1.47 15| 1.63 15 2.09 14 0.96 16| 0.081 0.13+ 0.122|0.707 1.505 0.693
Learning Flow [11] | 13.3f 02910 0.99 13 0.23 19| 1.24120.2912{0.36 15 1.56 17 0.25 14| 1.25 19 1.64 21 1.41 1] .32 19 0.8512|0.14 10 0.18 18 0.24 12| 1.09 15 2.09 13 1.27 13}
Filter Flow [19] 14.3|0.17 314 1.09 14 0.38 14/ 0.75 16 1.34 16 0.78 19/ 0.70 12 1.54 16 0.88 13(1.13 16 1.38 11 1.51 19| 1.324 0.445|0.22200.2325 0.2613|0.96 12 1.66 11 1.1211
GraphCuts [14] 14‘wh[ISBh[HMaD‘913135|9|]4€|5mm1[l75[I54|IL121143[I17|3 0.969 1.35100.84 19 3 1.789 1.2221|10.27200.17 14 0.43 22122 17 2.0515 1.78 19
Black & Anandan [4] |15.0 4217 0.18150.58 17 1.31 17 0.50 15/ 0.85 12 1.58 13 0.70 1¢| 171.58130.4517|1.08121.42131.2213| 1431122817 0.8310{0.15120.17 14 0.175|1.11 16 1.88 14 1.30 14|

SPSA-learn [13] 15.7] 7| 0.57 15 1.32 13 0.51 17(0.84 17 1.50 17 0.72 17| 151.64130.4813)1.12151.42131.3913|1.75192.14151.0620{ 0135 0.13¢ 0.187|1.32132.0817 1.73 13
GroupFlow [9] 15.9| 921 16821 0.7221|0.86 15 1.64 12 0.74 15 14 1.077 0.26151.29221.812 0.627|1.84212.30151.3622 0114 0.147 0.197|1.0613 1.8613 1.35 13
20-CLG[1] 17.4{0.281 0.62220.2113{0.67 20 1.21 15 0.7020{ 1.12 1 1.8021 0.9922| 1.07 2 2.06 1 1.1222| 1.23 18 1.52 17 1.6222| 1.54152.15 5 0.96 15| 0.102 0.111 0.164|1.38202.26 13 1.83 10|

|

Horn & Schunck [3] | 18.8| 112 1.53200.5215(1.01201.73200.8020(0.78 20 2.0220 0.77 20| 1.26 20 1.58 12 1.55 20/ 1.43 11 2.5922 1.00 15/ 0.16 12 0.18 15 0.153 2125021 1.88n

THDOFE [24] 19.6] 221.72221.26221.39252.082¢ 11723129 52213 1.41 23| 1.27 1 16120 1.57 | 1.289 2.57 21 1.0119/ 0135 0.152 0.16¢ (187227122 2.53 22
FOLKI[16] 228{029220732003322{1.5225 196240 18023(1.23222.042: 095710991 22022 1.0821|1.5325 18525 2.0723|2 14223232 16023 0.2623 0.21 2 0,68 23| 287 23 3. 27 23 4 32 3
Pyramid LK [2] 23.7|0.3924 06121 06124{167241.782320024{1.502¢1972213824157242392417824(284243 722 29824[{333242742524324{0.302¢ 0242 07324{3 8025082 488

Move the mouse over the numbers in the table to see the correspoending images. Click to compare with the ground truth.

Color encoding Schefflera - Complementary-OF flow flow error
of flow vectors :

Figure 8.12 Evaluation of the results of 24 optical flow algorithms, October 2009, http:
/Ivision.middlebury.edu/flow/, (Baker, Scharstein, Lewis et al. 2009). By moving the mouse
pointer over an underlined performance score, the user can interactively view the correspond-
ing flow and error maps. Clicking on a score toggles between the computed and ground truth
flows. Next to each score, the corresponding rank in the current column is indicated by a
smaller blue number. The minimum (best) score in each column is shown in boldface. The
table is sorted by the average rank (computed over all 24 columns, three region masks for each
of the eight sequences). The average rank serves as an approximate measure of performance
under the selected metric/statistic.

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

8.4 Optical flow 413

ginning to appear and tend to be among the better-performing methods on the recently re-
leased optical flow database (Baker, Black, Lewis et al. 2007).13

Examples of such techniques include the one developed by Glocker, Paragios, Komodakis
et al. (2008), who use a coarse-to-fine strategy with per-pixel 2D uncertainty estimates, which
are then used to guide the refinement and search at the next finer level. Instead of using gra-
dient descent to refine the flow estimates, a combinatorial search over discrete displacement
labels (which is able to find better energy minima) is performed using their Fast-PD algorithm
(Komodakis, Tziritas, and Paragios 2008).

Lempitsky, Roth, and Rother. (2008) use fusion moves (Lempitsky, Rother, and Blake
2007) over proposals generated from basic flow algorithms (Horn and Schunck 1981; Lucas
and Kanade 1981) to find good solutions. The basic idea behind fusion moves is to replace
portions of the current best estimate with hypotheses generated by more basic techniques
(or their shifted versions) and to alternate them with local gradient descent for better energy
minimization.

The field of accurate motion estimation continues to evolve at a rapid pace, with signif-
icant advances in performance occurring every year. The optical flow evaluation Web site
(http://vision.middlebury.edu/flow/) is a good source of pointers to high-performing recently
developed algorithms (Figure 8.12).

8.4.1 Multi-frame motion estimation

So far, we have looked at motion estimation as a two-frame problem, where the goal is to
compute a motion field that aligns pixels from one image with those in another. In practice,
motion estimation is usually applied to video, where a whole sequence of frames is available
to perform this task.

One classic approach to multi-frame motion is to filter the spatio-temporal volume using
oriented or steerable filters (Heeger 1988), in a manner analogous to oriented edge detec-
tion (Section 3.2.3). Figure 8.13 shows two frames from the commonly used flower garden
sequence, as well as a horizontal slice through the spatio-temporal volume, i.e., the 3D vol-
ume created by stacking all of the video frames together. Because the pixel motion is mostly
horizontal, the slopes of individual (textured) pixel tracks, which correspond to their horizon-
tal velocities, can clearly be seen. Spatio-temporal filtering uses a 3D volume around each
pixel to determine the best orientation in space—time, which corresponds directly to a pixel’s
velocity.

Unfortunately, in order to obtain reasonably accurate velocity estimates everywhere in
an image, spatio-temporal filters have moderately large extents, which severely degrades the
quality of their estimates near motion discontinuities. (This same problem is endemic in

13 hitp://vision.middlebury.edu/flow/.

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/

414 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

Figure 8.13 Slice through a spatio-temporal volume (Szeliski 1999) © 1999 IEEE: (a-b)
two frames from the flower garden sequence; (c) a horizontal slice through the complete
spatio-temporal volume, with the arrows indicating locations of potential key frames where
flow is estimated. Note that the colors for the flower garden sequence are incorrect; the correct
colors (yellow flowers) are shown in Figure 8.15.

2D window-based motion estimators.) An alternative to full spatio-temporal filtering is to
estimate more local spatio-temporal derivatives and use them inside a global optimization
framework to fill in textureless regions (Bruhn, Weickert, and Schnérr 2005; Govindu 2006).

Another alternative is to simultaneously estimate multiple motion estimates, while also
optionally reasoning about occlusion relationships (Szeliski 1999). Figure 8.13c shows schemat-
ically one potential approach to this problem. The horizontal arrows show the locations of
keyframes s where motion is estimated, while other slices indicate video frames ¢ whose
colors are matched with those predicted by interpolating between the keyframes. Motion es-
timation can be cast as a global energy minimization problem that simultaneously minimizes
brightness compatibility and flow compatibility terms between keyframes and other frames,
in addition to using robust smoothness terms.

The multi-view framework is potentially even more appropriate for rigid scene motion
(multi-view stereo) (Section 11.6), where the unknowns at each pixel are disparities and
occlusion relationships can be determined directly from pixel depths (Szeliski 1999; Kol-
mogorov and Zabih 2002). However, it may also be applicable to general motion, with the
addition of models for object accelerations and occlusion relationships.

8.4.2 Application: Video denoising

Video denoising is the process of removing noise and other artifacts such as scratches from
film and video (Kokaram 2004). Unlike single image denoising, where the only information
available is in the current picture, video denoisers can average or borrow information from
adjacent frames. However, in order to do this without introducing blur or jitter (irregular
motion), they need accurate per-pixel motion estimates.

Exercise 8.7 lists some of the steps required, which include the ability to determine if the

8.5 Layered motion 415

current motion estimate is accurate enough to permit averaging with other frames. Gai and
Kang (2009) describe their recently developed restoration process, which involves a series of
additional steps to deal with the special characteristics of vintage film.

8.4.3 Application: De-interlacing

Another commonly used application of per-pixel motion estimation is video de-interlacing,
which is the process of converting a video taken with alternating fields of even and odd
lines to a non-interlaced signal that contains both fields in each frame (de Haan and Bellers
1998). Two simple de-interlacing techniques are bob, which copies the line above or below
the missing line from the same field, and weave, which copies the corresponding line from
the field before or after. The names come from the visual artifacts generated by these two
simple techniques: bob introduces an up-and-down bobbing motion along strong horizontal
lines; weave can lead to a “zippering” effect along horizontally translating edges. Replacing
these copy operators with averages can help but does not completely remove these artifacts.

A wide variety of improved techniques have been developed for this process, which is
often embedded in specialized DSP chips found inside video digitization boards in computers
(since broadcast video is often interlaced, while computer monitors are not). A large class
of these techniques estimates local per-pixel motions and interpolates the missing data from
the information available in spatially and temporally adjacent fields. Dai, Baker, and Kang
(2009) review this literature and propose their own algorithm, which selects among seven
different interpolation functions at each pixel using an MRF framework.

8.5 Layered motion

In many situation, visual motion is caused by the movement of a small number of objects
at different depths in the scene. In such situations, the pixel motions can be described more
succinctly (and estimated more reliably) if pixels are grouped into appropriate objects or
layers (Wang and Adelson 1994).

Figure 8.14 shows this approach schematically. The motion in this sequence is caused by
the translational motion of the checkered background and the rotation of the foreground hand.
The complete motion sequence can be reconstructed from the appearance of the foreground
and background elements, which can be represented as alpha-matted images (sprites or video
objects) and the parametric motion corresponding to each layer. Displacing and compositing
these layers in back to front order (Section 3.1.3) recreates the original video sequence.

Layered motion representations not only lead to compact representations (Wang and
Adelson 1994; Lee, ge Chen, lung Bruce Lin ez al. 1997), but they also exploit the infor-
mation available in multiple video frames, as well as accurately modeling the appearance of

416 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

1—/ 0/ D/
.’l/ &/ ﬁ/
#/ #/ ﬁ/

Intensity map Alpha map Velocity map

—

= —_— e

Intensity map Alpha map Velocity map

Frame 1 Frame 2 Frame 3

Figure 8.14 Layered motion estimation framework (Wang and Adelson 1994) (©) 1994
IEEE: The top two rows describe the two layers, each of which consists of an intensity (color)
image, an alpha mask (black=transparent), and a parametric motion field. The layers are com-
posited with different amounts of motion to recreate the video sequence.

pixels near motion discontinuities. This makes them particularly suited as a representation
for image-based rendering (Section 13.2.1) (Shade, Gortler, He et al. 1998; Zitnick, Kang,
Uyttendaele et al. 2004) as well as object-level video editing.

To compute a layered representation of a video sequence, Wang and Adelson (1994) first
estimate affine motion models over a collection of non-overlapping patches and then cluster
these estimates using k-means. They then alternate between assigning pixels to layers and
recomputing motion estimates for each layer using the assigned pixels, using a technique
first proposed by Darrell and Pentland (1991). Once the parametric motions and pixel-wise
layer assignments have been computed for each frame independently, layers are constructed
by warping and merging the various layer pieces from all of the frames together. Median
filtering is used to produce sharp composite layers that are robust to small intensity variations,
as well as to infer occlusion relationships between the layers. Figure 8.15 shows the results
of this process on the flower garden sequence. You can see both the initial and final layer
assignments for one of the frames, as well as the composite flow and the alpha-matted layers
with their corresponding flow vectors overlaid.

In follow-on work, Weiss and Adelson (1996) use a formal probabilistic mixture model
to infer both the optimal number of layers and the per-pixel layer assignments. Weiss (1997)

8.5 Layered motion 417

fwit £

3
|

i

q
L
-
+ W

flow initial layers final layers

B -g! B
color image (input frame)

layers with pixel assignments and flow

Figure 8.15 Layered motion estimation results (Wang and Adelson 1994) (©) 1994 IEEE.

further generalizes this approach by replacing the per-layer affine motion models with smooth
regularized per-pixel motion estimates, which allows the system to better handle curved and
undulating layers, such as those seen in most real-world sequences.

The above approaches, however, still make a distinction between estimating the motions
and layer assignments and then later estimating the layer colors. In the system described by
Baker, Szeliski, and Anandan (1998), the generative model illustrated in Figure 8.14 is gen-
eralized to account for real-world rigid motion scenes. The motion of each frame is described
using a 3D camera model and the motion of each layer is described using a 3D plane equation
plus per-pixel residual depth offsets (the plane plus parallax representation (Section 2.1.5)).
The initial layer estimation proceeds in a manner similar to that of Wang and Adelson (1994),
except that rigid planar motions (homographies) are used instead of affine motion models.
The final model refinement, however, jointly re-optimizes the layer pixel color and opacity
values L; and the 3D depth, plane, and motion parameters z;, n;, and P; by minimizing the
discrepancy between the re-synthesized and observed motion sequences (Baker, Szeliski, and
Anandan 1998).

Figure 8.16 shows the final results obtained with this algorithm. As you can see, the
motion boundaries and layer assignments are much crisper than those in Figure 8.15. Because
of the per-pixel depth offsets, the individual layer color values are also sharper than those
obtained with affine or planar motion models. While the original system of Baker, Szeliski,
and Anandan (1998) required a rough initial assignment of pixels to layers, Torr, Szeliski,
and Anandan (2001) describe automated Bayesian techniques for initializing this system and
determining the optimal number of layers.

Layered motion estimation continues to be an active area of research. Representative pa-
pers in this area include (Sawhney and Ayer 1996; Jojic and Frey 2001; Xiao and Shah 2005;
Kumar, Torr, and Zisserman 2008; Thayananthan, Iwasaki, and Cipolla 2008; Schoenemann
and Cremers 2008).

418 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

()

Figure 8.16 Layered stereo reconstruction (Baker, Szeliski, and Anandan 1998) (©) 1998
IEEE: (a) first and (b) last input images; (c) initial segmentation into six layers; (d) and
(e) the six layer sprites; (f) depth map for planar sprites (darker denotes closer); front layer
(g) before and (h) after residual depth estimation. Note that the colors for the flower garden
sequence are incorrect; the correct colors (yellow flowers) are shown in Figure 8.15.

o

Of course, layers are not the only way to introduce segmentation into motion estimation.
A large number of algorithms have been developed that alternate between estimating optic
flow vectors and segmenting them into coherent regions (Black and Jepson 1996; Ju, Black,
and Jepson 1996; Chang, Tekalp, and Sezan 1997; Mémin and Pérez 2002; Cremers and
Soatto 2005). Some of the more recent techniques rely on first segmenting the input color
images and then estimating per-segment motions that produce a coherent motion field while
also modeling occlusions (Zitnick, Kang, Uyttendaele et al. 2004; Zitnick, Jojic, and Kang
2005; Stein, Hoiem, and Hebert 2007; Thayananthan, Iwasaki, and Cipolla 2008).

8.5.1 Application: Frame interpolation

Frame interpolation is another widely used application of motion estimation, often imple-
mented in the same circuitry as de-interlacing hardware required to match an incoming video

8.5 Layered motion 419

to a monitor’s actual refresh rate. As with de-interlacing, information from novel in-between
frames needs to be interpolated from preceding and subsequent frames. The best results can
be obtained if an accurate motion estimate can be computed at each unknown pixel’s lo-
cation. However, in addition to computing the motion, occlusion information is critical to
prevent colors from being contaminated by moving foreground objects that might obscure a
particular pixel in a preceding or subsequent frame.

In a little more detail, consider Figure 8.13c and assume that the arrows denote keyframes
between which we wish to interpolate additional images. The orientations of the streaks
in this figure encode the velocities of individual pixels. If the same motion estimate g is
obtained at location x(in image [, as is obtained at location xy + ug in image I1, the flow
vectors are said to be consistent. This motion estimate can be transferred to location x4 tug
in the image I; being generated, where ¢ € (0, 1) is the time of interpolation. The final color
value at pixel &y + tug can be computed as a linear blend,

It(:l’:() + t'll,o) = (1 - t).[o(a}o) + tIl(iBo + UQ). (8.72)

If, however, the motion vectors are different at corresponding locations, some method must
be used to determine which is correct and which image contains colors that are occluded.
The actual reasoning is even more subtle than this. One example of such an interpolation
algorithm, based on earlier work in depth map interpolation (Shade, Gortler, He et al. 1998;
Zitnick, Kang, Uyttendaele er al. 2004) which is the one used in the flow evaluation paper of
Baker, Black, Lewis et al. (2007); Baker, Scharstein, Lewis et al. (2009). An even higher-
quality frame interpolation algorithm, which uses gradient-based reconstruction, is presented
by Mahajan, Huang, Matusik et al. (2009).

8.5.2 Transparent layers and reflections

A special case of layered motion that occurs quite often is transparent motion, which is usu-
ally caused by reflections seen in windows and picture frames (Figures 8.17 and 8.18).

Some of the early work in this area handles transparent motion by either just estimating
the component motions (Shizawa and Mase 1991; Bergen, Burt, Hingorani ez al. 1992; Darrell
and Simoncelli 1993; Irani, Rousso, and Peleg 1994) or by assigning individual pixels to
competing motion layers (Darrell and Pentland 1995; Black and Anandan 1996; Ju, Black,
and Jepson 1996), which is appropriate for scenes partially seen through a fine occluder
(e.g., foliage). However, to accurately separate truly transparent layers, a better model for
motion due to reflections is required. Because of the way that light is both reflected from
and transmitted through a glass surface, the correct model for reflections is an additive one,
where each moving layer contributes some intensity to the final image (Szeliski, Avidan, and
Anandan 2000).

420 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

]

Figure 8.17 Light reflecting off the transparent glass of a picture frame: (a) first image from
the input sequence; (b) dominant motion layer min-composite; (c) secondary motion residual
layer max-composite; (d—e) final estimated picture and reflection layers The original images
are from Black and Anandan (1996), while the separated layers are from Szeliski, Avidan,
and Anandan (2000) (©) 2000 IEEE.

If the motions of the individual layers are known, the recovery of the individual layers is
a simple constrained least squares problem, with the individual layer images are constrained
to be positive. However, this problem can suffer from extended low-frequency ambiguities,
especially if either of the layers lacks dark (black) pixels or the motion is uni-directional. In
their paper, Szeliski, Avidan, and Anandan (2000) show that the simultaneous estimation of
the motions and layer values can be obtained by alternating between robustly computing the
motion layers and then making conservative (upper- or lower-bound) estimates of the layer
intensities. The final motion and layer estimates can then be polished using gradient descent
on a joint constrained least squares formulation similar to (Baker, Szeliski, and Anandan
1998), where the over compositing operator is replaced with addition.

Figures 8.17 and 8.18 show the results of applying these techniques to two different pic-
ture frames with reflections. Notice how, in the second sequence, the amount of reflected light
is quite low compared to the transmitted light (the picture of the girl) and yet the algorithm is
still able to recover both layers.

Unfortunately, the simple parametric motion models used in (Szeliski, Avidan, and Anan-
dan 2000) are only valid for planar reflectors and scenes with shallow depth. The extension of
these techniques to curved reflectors and scenes with significant depth has also been studied

8.6 Additional reading 421

(a) (b) (c) (d) (e)

Figure 8.18 Transparent motion separation (Szeliski, Avidan, and Anandan 2000) © 2000
IEEE: (a) first image from input sequence; (b) dominant motion layer min-composite; (c) sec-
ondary motion residual layer max-composite; (d—e) final estimated picture and reflection lay-
ers. Note that the reflected layers in (c) and (e) are doubled in intensity to better show their
structure.

(Swaminathan, Kang, Szeliski et al. 2002; Criminisi, Kang, Swaminathan ez al. 2005), as has
the extension to scenes with more complex 3D depth (Tsin, Kang, and Szeliski 2006).

8.6 Additional reading

Some of the earliest algorithms for motion estimation were developed for motion-compen-
sated video coding (Netravali and Robbins 1979) and such techniques continue to be used
in modern coding standards such as MPEG, H.263, and H.264 (Le Gall 1991; Richardson
2003).'* In computer vision, this field was originally called image sequence analysis (Huang
1981). Some of the early seminal papers include the variational approaches developed by
Horn and Schunck (1981) and Nagel and Enkelmann (1986), and the patch-based translational
alignment technique developed by Lucas and Kanade (1981). Hierarchical (coarse-to-fine)
versions of such algorithms were developed by Quam (1984), Anandan (1989), and Bergen,
Anandan, Hanna et al. (1992), although they have also long been used in motion estimation
for video coding.

Translational motion models were generalized to affine motion by Rehg and Witkin (1991),
Fuh and Maragos (1991), and Bergen, Anandan, Hanna et al. (1992) and to quadric refer-
ence surfaces by Shashua and Toelg (1997) and Shashua and Wexler (2001)—see Baker and
Matthews (2004) for a nice review. Such parametric motion estimation algorithms have found
widespread application in video summarization (Teodosio and Bender 1993; Irani and Anan-
dan 1998), video stabilization (Hansen, Anandan, Dana et al. 1994; Srinivasan, Chellappa,

14 hitp://www.itu.int/rec/T-REC-H.264.

http://www.itu.int/rec/T-REC-H.264

422 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Veeraraghavan et al. 2005; Matsushita, Ofek, Ge et al. 2006), and video compression (Irani,
Hsu, and Anandan 1995; Lee, ge Chen, lung Bruce Lin ef al. 1997). Surveys of parametric
image registration include those by Brown (1992), Zitov’aa and Flusser (2003), Goshtasby
(2005), and Szeliski (2006a).

Good general surveys and comparisons of optic flow algorithms include those by Ag-
garwal and Nandhakumar (1988), Barron, Fleet, and Beauchemin (1994), Otte and Nagel
(1994), Mitiche and Bouthemy (1996), Stiller and Konrad (1999), McCane, Novins, Cran-
nitch et al. (2001), Szeliski (2006a), and Baker, Black, Lewis et al. (2007). The topic of
matching primitives, i.e., pre-transforming images using filtering or other techniques before
matching, is treated in a number of papers (Anandan 1989; Bergen, Anandan, Hanna et al.
1992; Scharstein 1994; Zabih and Woodfill 1994; Cox, Roy, and Hingorani 1995; Viola and
Wells III 1997; Negahdaripour 1998; Kim, Kolmogorov, and Zabih 2003; Jia and Tang 2003;
Papenberg, Bruhn, Brox et al. 2006; Seitz and Baker 2009). Hirschmiiller and Scharstein
(2009) compare a number of these approaches and report on their relative performance in
scenes with exposure differences.

The publication of a new benchmark for evaluating optical flow algorithms (Baker, Black,
Lewis et al. 2007) has led to rapid advances in the quality of estimation algorithms, to the
point where new datasets may soon become necessary. According to their updated techni-
cal report (Baker, Scharstein, Lewis et al. 2009), most of the best performing algorithms use
robust data and smoothness norms (often L; TV) and continuous variational optimization
techniques, although some techniques use discrete optimization or segmentations (Papen-
berg, Bruhn, Brox et al. 2006; Trobin, Pock, Cremers et al. 2008; Xu, Chen, and Jia 2008;
Lempitsky, Roth, and Rother. 2008; Werlberger, Trobin, Pock ef al. 2009; Lei and Yang 2009;
Wedel, Cremers, Pock et al. 2009).

8.7 Exercises

Ex 8.1: Correlation Implement and compare the performance of the following correlation
algorithms:

e sum of squared differences (8.1)

e sum of robust differences (8.2)

sum of absolute differences (8.3)

e bias—gain compensated squared differences (8.9)

normalized cross-correlation (8.11)

8.7 Exercises 423

e windowed versions of the above (8.22-8.23)

e Fourier-based implementations of the above measures (8.18-8.20)
e phase correlation (8.24)

e gradient cross-correlation (Argyriou and Vlachos 2003).

Compare a few of your algorithms on different motion sequences with different amounts of

noise, exposure variation, occlusion, and frequency variations (e.g., high-frequency textures,

such as sand or cloth, and low-frequency images, such as clouds or motion-blurred video).

Some datasets with illumination variation and ground truth correspondences (horizontal mo-

tion) can be found at http://vision.middlebury.edu/stereo/data/ (the 2005 and 2006 datasets).
Some additional ideas, variants, and questions:

1. When do you think that phase correlation will outperform regular correlation or SSD?
Can you show this experimentally or justify it analytically?

2. For the Fourier-based masked or windowed correlation and sum of squared differences,
the results should be the same as the direct implementations. Note that you will have
to expand (8.5) into a sum of pairwise correlations, just as in (8.22). (This is part of the
exercise.)

3. For the bias—gain corrected variant of squared differences (8.9), you will also have
to expand the terms to end up with a 3 x 3 (least squares) system of equations. If
implementing the Fast Fourier Transform version, you will need to figure out how all
of these entries can be evaluated in the Fourier domain.

4. (Optional) Implement some of the additional techniques studied by Hirschmiiller and
Scharstein (2009) and see if your results agree with theirs.

Ex 8.2: Affine registration Implement a coarse-to-fine direct method for affine and pro-
jective image alignment.

1. Does it help to use lower-order (simpler) models at coarser levels of the pyramid
(Bergen, Anandan, Hanna et al. 1992)?

2. (Optional) Implement patch-based acceleration (Shum and Szeliski 2000; Baker and
Matthews 2004).

3. See the Baker and Matthews (2004) survey for more comparisons and ideas.

Ex 8.3: Stabilization Write a program to stabilize an input video sequence. You should
implement the following steps, as described in Section 8.2.1:

http://vision.middlebury.edu/stereo/data/

424

Computer Vision: Algorithms and Applications (September 3, 2010 draft)

. Compute the translation (and, optionally, rotation) between successive frames with ro-

bust outlier rejection.

Perform temporal high-pass filtering on the motion parameters to remove the low-
frequency component (smooth the motion).

. Compensate for the high-frequency motion, zooming in slightly (a user-specified amount)

to avoid missing edge pixels.

(Optional) Do not zoom in, but instead borrow pixels from previous or subsequent
frames to fill in.

(Optional) Compensate for images that are blurry because of fast motion by “stealing”
higher frequencies from adjacent frames.

Ex 8.4: Optical flow Compute optical flow (spline-based or per-pixel) between two im-
ages, using one or more of the techniques described in this chapter.

1.

3.

Test your algorithms on the motion sequences available at http://vision.middlebury.
edu/flow/ or http://people.csail.mit.edu/celiu/motionAnnotation/ and compare your re-
sults (visually) to those available on these Web sites. If you think your algorithm is
competitive with the best, consider submitting it for formal evaluation.

Visualize the quality of your results by generating in-between images using frame in-
terpolation (Exercise 8.5).

What can you say about the relative efficiency (speed) of your approach?

Ex 8.5: Automated morphing / frame interpolation Write a program to automatically morph
between pairs of images. Implement the following steps, as sketched out in Section 8.5.1 and
by Baker, Scharstein, Lewis et al. (2009):

1.

3.

Compute the flow both ways (previous exercise). Consider using a multi-frame (n > 2)
technique to better deal with occluded regions.

For each intermediate (morphed) image, compute a set of flow vectors and which im-
ages should be used in the final composition.

Blend (cross-dissolve) the images and view with a sequence viewer.

Try this out on images of your friends and colleagues and see what kinds of morphs you get.
Alternatively, take a video sequence and do a high-quality slow-motion effect. Compare your
algorithm with simple cross-fading.

http://vision.middlebury.edu/flow/
http://vision.middlebury.edu/flow/
http://people.csail.mit.edu/celiu/motionAnnotation/

8.7 Exercises 425

Ex 8.6: Motion-based user interaction Write a program to compute a low-resolution mo-
tion field in order to interactively control a simple application (Cutler and Turk 1998). For
example:

1. Downsample each image using a pyramid and compute the optical flow (spline-based
or pixel-based) from the previous frame.

2. Segment each training video sequence into different “actions” (e.g., hand moving in-
wards, moving up, no motion) and “learn” the velocity fields associated with each one.
(You can simply find the mean and variance for each motion field or use something
more sophisticated, such as a support vector machine (SVM).)

3. Write a recognizer that finds successive actions of approximately the right duration and
hook it up to an interactive application (e.g., a sound generator or a computer game).

4. Ask your friends to test it out.

Ex 8.7: Video denoising Implement the algorithm sketched in Application 8.4.2. Your al-
gorithm should contain the following steps:

1. Compute accurate per-pixel flow.
2. Determine which pixels in the reference image have good matches with other frames.

3. Either average all of the matched pixels or choose the sharpest image, if trying to
compensate for blur. Don’t forget to use regular single-frame denoising techniques as
part of your solution, (see Section 3.4.4, Section 3.7.3, and Exercise 3.11).

4. Devise a fall-back strategy for areas where you don’t think the flow estimates are accu-
rate enough.

Ex 8.8: Motion segmentation Write a program to segment an image into separately mov-
ing regions or to reliably find motion boundaries.

Use the human-assisted motion segmentation database at http://people.csail.mit.edu/celiu/
motionAnnotation/ as some of your test data.

Ex 8.9: Layered motion estimation Decompose into separate layers (Section 8.5) a video
sequence of a scene taken with a moving camera:

1. Find the set of dominant (affine or planar perspective) motions, either by computing
them in blocks or finding a robust estimate and then iteratively re-fitting outliers.

2. Determine which pixels go with each motion.

http://people.csail.mit.edu/celiu/motionAnnotation/
http://people.csail.mit.edu/celiu/motionAnnotation/

426 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

3. Construct the layers by blending pixels from different frames.
4. (Optional) Add per-pixel residual flows or depths.
5. (Optional) Refine your estimates using an iterative global optimization technique.

6. (Optional) Write an interactive renderer to generate in-between frames or view the
scene from different viewpoints (Shade, Gortler, He et al. 1998).

7. (Optional) Construct an unwrap mosaic from a more complex scene and use this to do
some video editing (Rav-Acha, Kohli, Fitzgibbon et al. 2008).

Ex 8.10: Transparent motion and reflection estimation Take a video sequence looking
through a window (or picture frame) and see if you can remove the reflection in order to
better see what is inside.

The steps are described in Section 8.5.2 and by Szeliski, Avidan, and Anandan (2000).
Alternative approaches can be found in work by Shizawa and Mase (1991), Bergen, Burt,
Hingorani et al. (1992), Darrell and Simoncelli (1993), Darrell and Pentland (1995), Irani,
Rousso, and Peleg (1994), Black and Anandan (1996), and Ju, Black, and Jepson (1996).

9.1

9.2

9.3

9.4
9.5

Chapter 9

Image stitching

Motionmodels 430
9.1.1 Planar perspective motion 431
9.1.2 Application: Whiteboard and document scanning 432
9.1.3 Rotational panoramas 433
9.1.4 Gapclosing e 435
9.1.5 Application: Video summarization and compression 436
9.1.6 Cylindrical and spherical coordinates 438
Global alignment 441
9.2.1 Bundle adjustment 441
9.2.2 Parallaxremoval 445
9.2.3 Recognizing panoramaso 446
9.2.4 Direct vs. feature-based alignment 450
Compositing v v e e e e e e e e e e 450
9.3.1 Choosing a compositing surface 451
9.3.2 Pixel selection and weighting (de-ghosting) 453
9.3.3 Application: Photomontage 459
9.34 Blending 459
Additional reading 462
Exercises 463

428 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 9.1 Image stitching: (a) portion of a cylindrical panorama and (b) a spherical
panorama constructed from 54 photographs (Szeliski and Shum 1997) © 1997 ACM; (¢) a
multi-image panorama automatically assembled from an unordered photo collection; a multi-
image stitch (d) without and (e) with moving object removal (Uyttendaele, Eden, and Szeliski
2001) (© 2001 IEEE.

9 Image stitching 429

Algorithms for aligning images and stitching them into seamless photo-mosaics are among
the oldest and most widely used in computer vision (Milgram 1975; Peleg 1981). image
stitching algorithms create the high-resolution photo-mosaics used to produce today’s digital
maps and satellite photos. They also come bundled with most digital cameras and can be used
to create beautiful ultra wide-angle panoramas.

image stitching originated in the photogrammetry community, where more manually in-
tensive methods based on surveyed ground control points or manually registered tie points
have long been used to register aerial photos into large-scale photo-mosaics (Slama 1980).
One of the key advances in this community was the development of bundle adjustment al-
gorithms (Section 7.4), which could simultaneously solve for the locations of all of the cam-
era positions, thus yielding globally consistent solutions (Triggs, McLauchlan, Hartley et al.
1999). Another recurring problem in creating photo-mosaics is the elimination of visible
seams, for which a variety of techniques have been developed over the years (Milgram 1975,
1977; Peleg 1981; Davis 1998; Agarwala, Dontcheva, Agrawala et al. 2004)

In film photography, special cameras were developed in the 1990s to take ultra-wide-
angle panoramas, often by exposing the film through a vertical slit as the camera rotated on its
axis (Meehan 1990). In the mid-1990s, image alignment techniques started being applied to
the construction of wide-angle seamless panoramas from regular hand-held cameras (Mann
and Picard 1994; Chen 1995; Szeliski 1996). More recent work in this area has addressed
the need to compute globally consistent alignments (Szeliski and Shum 1997; Sawhney and
Kumar 1999; Shum and Szeliski 2000), to remove “ghosts” due to parallax and object move-
ment (Davis 1998; Shum and Szeliski 2000; Uyttendaele, Eden, and Szeliski 2001; Agarwala,
Dontcheva, Agrawala et al. 2004), and to deal with varying exposures (Mann and Picard 1994;
Uyttendaele, Eden, and Szeliski 2001; Levin, Zomet, Peleg ef al. 2004; Agarwala, Dontcheva,
Agrawala et al. 2004; Eden, Uyttendaele, and Szeliski 2006; Kopf, Uyttendaele, Deussen et
al. 2007)." These techniques have spawned a large number of commercial stitching products
(Chen 1995; Sawhney, Kumar, Gendel ez al. 1998), of which reviews and comparisons can
be found on the Web.?

While most of the earlier techniques worked by directly minimizing pixel-to-pixel dis-
similarities, more recent algorithms usually extract a sparse set of features and match them
to each other, as described in Chapter 4. Such feature-based approaches to image stitching
have the advantage of being more robust against scene movement and are potentially faster,
if implemented the right way. Their biggest advantage, however, is the ability to “recognize
panoramas”, i.e., to automatically discover the adjacency (overlap) relationships among an
unordered set of images, which makes them ideally suited for fully automated stitching of

! A collection of some of these papers was compiled by Benosman and Kang (2001) and they are surveyed by
Szeliski (2006a).
2 The Photosynth Web site, http://photosynth.net, allows people to create and upload panoramas for free.

http://photosynth.net

430 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

panoramas taken by casual users (Brown and Lowe 2007).

What, then, are the essential problems in image stitching? As with image alignment, we
must first determine the appropriate mathematical model relating pixel coordinates in one im-
age to pixel coordinates in another; Section 9.1 reviews the basic models we have studied and
presents some new motion models related specifically to panoramic image stitching. Next,
we must somehow estimate the correct alignments relating various pairs (or collections) of
images. Chapter 4 discussed how distinctive features can be found in each image and then
efficiently matched to rapidly establish correspondences between pairs of images. Chapter 8
discussed how direct pixel-to-pixel comparisons combined with gradient descent (and other
optimization techniques) can also be used to estimate these parameters. When multiple im-
ages exist in a panorama, bundle adjustment (Section 7.4) can be used to compute a globally
consistent set of alignments and to efficiently discover which images overlap one another. In
Section 9.2, we look at how each of these previously developed techniques can be modified
to take advantage of the imaging setups commonly used to create panoramas.

Once we have aligned the images, we must choose a final compositing surface for warping
the aligned images (Section 9.3.1). We also need algorithms to seamlessly cut and blend over-
lapping images, even in the presence of parallax, lens distortion, scene motion, and exposure
differences (Section 9.3.2-9.3.4).

9.1 Motion models

Before we can register and align images, we need to establish the mathematical relationships
that map pixel coordinates from one image to another. A variety of such parametric motion
models are possible, from simple 2D transforms, to planar perspective models, 3D camera
rotations, lens distortions, and mapping to non-planar (e.g., cylindrical) surfaces.

We already covered several of these models in Sections 2.1 and 6.1. In particular, we saw
in Section 2.1.5 how the parametric motion describing the deformation of a planar surfaced
as viewed from different positions can be described with an eight-parameter homography
(2.71) (Mann and Picard 1994; Szeliski 1996). We also saw how a camera undergoing a pure
rotation induces a different kind of homography (2.72).

In this section, we review both of these models and show how they can be applied to dif-
ferent stitching situations. We also introduce spherical and cylindrical compositing surfaces
and show how, under favorable circumstances, they can be used to perform alignment using
pure translations (Section 9.1.6). Deciding which alignment model is most appropriate for a
given situation or set of data is a model selection problem (Hastie, Tibshirani, and Friedman
2001; Torr 2002; Bishop 2006; Robert 2007), an important topic we do not cover in this book.

9.1 Motion models 431

(a) translation [2 dof] (b) affine [6 dof] (c) perspective [8 dof] (d) 3D rotation [3+ dof]

Figure 9.2 Two-dimensional motion models and how they can be used for image stitching.

9.1.1 Planar perspective motion

The simplest possible motion model to use when aligning images is to simply translate and
rotate them in 2D (Figure 9.2a). This is exactly the same kind of motion that you would
use if you had overlapping photographic prints. It is also the kind of technique favored by
David Hockney to create the collages that he calls joiners (Zelnik-Manor and Perona 2007;
Nomura, Zhang, and Nayar 2007). Creating such collages, which show visible seams and
inconsistencies that add to the artistic effect, is popular on Web sites such as Flickr, where they
more commonly go under the name panography (Section 6.1.2). Translation and rotation are
also usually adequate motion models to compensate for small camera motions in applications
such as photo and video stabilization and merging (Exercise 6.1 and Section 8.2.1).

In Section 6.1.3, we saw how the mapping between two cameras viewing a common plane
can be described using a 3 x 3 homography (2.71). Consider the matrix M 1 that arises when
mapping a pixel in one image to a 3D point and then back onto a second image,

- 5 51~ -
Il:lNP1P0 wonloazO. (91)

When the last row of the P matrix is replaced with a plane equation 7oy - p+ o and points are
assumed to lie on this plane, i.e., their disparity is dy = 0, we can ignore the last column of
M 1o and also its last row, since we do not care about the final z-buffer depth. The resulting
homography matrix H (the upper left 3 x 3 sub-matrix of M o) describes the mapping
between pixels in the two images,

1 ~ HoZo. 9.2)

This observation formed the basis of some of the earliest automated image stitching al-
gorithms (Mann and Picard 1994; Szeliski 1994, 1996). Because reliable feature matching
techniques had not yet been developed, these algorithms used direct pixel value matching, i.e.,
direct parametric motion estimation, as described in Section 8.2 and Equations (6.19-6.20).

432 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

More recent stitching algorithms first extract features and then match them up, often using
robust techniques such as RANSAC (Section 6.1.4) to compute a good set of inliers. The final
computation of the homography (9.2), i.e., the solution of the least squares fitting problem
given pairs of corresponding features,

(14 hoo)zo + ho1yo + ho2
haoTo + ha1yo + 1

_ hioxo + (1 4+ h11)yo + hi2
haoxo + ha1yo + 1

and 11 , 9.3)

xr1 =

uses iterative least squares, as described in Section 6.1.3 and Equations (6.21-6.23).

9.1.2 Application: Whiteboard and document scanning

The simplest image-stitching application is to stitch together a number of image scans taken
on a flatbed scanner. Say you have a large map, or a piece of child’s artwork, that is too large
to fit on your scanner. Simply take multiple scans of the document, making sure to overlap
the scans by a large enough amount to ensure that there are enough common features. Next,
take successive pairs of images that you know overlap, extract features, match them up, and
estimate the 2D rigid transform (2.16),

Tpt1 = Rz + t, 9.4)

that best matches the features, using two-point RANSAC, if necessary, to find a good set
of inliers. Then, on a final compositing surface (aligned with the first scan, for example),
resample your images (Section 3.6.1) and average them together. Can you see any potential
problems with this scheme?

One complication is that a 2D rigid transformation is non-linear in the rotation angle 6,
so you will have to either use non-linear least squares or constrain R to be orthonormal, as
described in Section 6.1.3.

A bigger problem lies in the pairwise alignment process. As you align more and more
pairs, the solution may drift so that it is no longer globally consistent. In this case, a global op-
timization procedure, as described in Section 9.2, may be required. Such global optimization
often requires a large system of non-linear equations to be solved, although in some cases,
such as linearized homographies (Section 9.1.3) or similarity transforms (Section 6.1.2), reg-
ular least squares may be an option.

A slightly more complex scenario is when you take multiple overlapping handheld pic-
tures of a whiteboard or other large planar object (He and Zhang 2005; Zhang and He 2007).
Here, the natural motion model to use is a homography, although a more complex model that
estimates the 3D rigid motion relative to the plane (plus the focal length, if unknown), could
in principle be used.

9.1 Motion models 433

11
(0,0,0,1)p=0

Xo = (Xo.Yofo) X1 = (Xa,y1,f1)
Rio

Figure 9.3 Pure 3D camera rotation. The form of the homography (mapping) is particularly
simple and depends only on the 3D rotation matrix and focal lengths.

9.1.3 Rotational panoramas

The most typical case for panoramic image stitching is when the camera undergoes a pure ro-
tation. Think of standing at the rim of the Grand Canyon. Relative to the distant geometry in
the scene, as you snap away, the camera is undergoing a pure rotation, which is equivalent to
assuming that all points are very far from the camera, i.e., on the plane at infinity (Figure 9.3).
Setting tg = t; = 0, we get the simplified 3 x 3 homography

Hy,=K RR;'K;' = K,R(K; ", 9.5)

where K = diag(fx, fx, 1) is the simplified camera intrinsic matrix (2.59), assuming that
¢z = ¢y = 0, i.e., we are indexing the pixels starting from the optical center (Szeliski 1996).
This can also be re-written as

1 fi fo o
Y|~ fi Ry £t Yo 9.6)
1 1 1 1
or
T i)
yi | ~Riwo| v | 9.7
f1 fo

which reveals the simplicity of the mapping equations and makes all of the motion parameters
explicit. Thus, instead of the general eight-parameter homography relating a pair of images,
we get the three-, four-, or five-parameter 3D rotation motion models corresponding to the
cases where the focal length f is known, fixed, or variable (Szeliski and Shum 1997).° Es-
timating the 3D rotation matrix (and, optionally, focal length) associated with each image is

3 An initial estimate of the focal lengths can be obtained using the intrinsic calibration techniques described in
Section 6.3.4 or from EXIF tags.

434 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

intrinsically more stable than estimating a homography with a full eight degrees of freedom,
which makes this the method of choice for large-scale image stitching algorithms (Szeliski
and Shum 1997; Shum and Szeliski 2000; Brown and Lowe 2007).

Given this representation, how do we update the rotation matrices to best align two over-
lapping images? Given a current estimate for the homography H in (9.5), the best way to
update R is to prepend an incremental rotation matrix R(w) to the current estimate R
(Szeliski and Shum 1997; Shum and Szeliski 2000),

H(w) = K |R(w)RWK;' = [K\R(w)K{'[K1R10K;'| = DH . (9.8)

Note that here we have written the update rule in the compositional form, where the in-
cremental update D is prepended to the current homography H1y. Using the small-angle
approximation to R(w) given in (2.35), we can write the incremental update matrix as

1 —Ww, fiwy
D=K RwWK'~K (I+wK;'= W, 1 —fiws |- 99

_wy/fl ww/fl 1

Notice how there is now a nice one-to-one correspondence between the entries in the D
matrix and the hqg, . . ., ho; parameters used in Table 6.1 and Equation (6.19), i.e.,

(hom ho1, ho2, hoo, 11, h12, hao, h21) = (07 —Wz, flwyawza 0, — fiwa, _wy/flvwx/f1)~

9.10)
We can therefore apply the chain rule to Equations (6.24 and 9.10) to obtain
n 2 Wy
F-a|_[—awn A+h || 011
9 -y —(hi+y*/h) wy/h z Sl

which give us the linearized update equations needed to estimate w = (w,,w,,w,).* Notice
that this update rule depends on the focal length f; of the target view and is independent
of the focal length fy of the template view. This is because the compositional algorithm
essentially makes small perturbations to the target. Once the incremental rotation vector w
has been computed, the R; rotation matrix can be updated using Ry «+— R(w)R;.

The formulas for updating the focal length estimates are a little more involved and are
given in (Shum and Szeliski 2000). We will not repeat them here, since an alternative up-
date rule, based on minimizing the difference between back-projected 3D rays, is given in
Section 9.2.1. Figure 9.4 shows the alignment of four images under the 3D rotation motion
model.

4 This is the same as the rotational component of instantaneous rigid flow (Bergen, Anandan, Hanna et al. 1992)
and the update equations given by Szeliski and Shum (1997) and Shum and Szeliski (2000).

9.1 Motion models 435

Figure 9.4 Four images taken with a hand-held camera registered using a 3D rotation mo-
tion model (Szeliski and Shum 1997) (©) 1997 ACM. Notice how the homographies, rather
than being arbitrary, have a well-defined keystone shape whose width increases away from
the origin.

9.1.4 Gap closing

The techniques presented in this section can be used to estimate a series of rotation matrices
and focal lengths, which can be chained together to create large panoramas. Unfortunately,
because of accumulated errors, this approach will rarely produce a closed 360° panorama.
Instead, there will invariably be either a gap or an overlap (Figure 9.5).

We can solve this problem by matching the first image in the sequence with the last one.
The difference between the two rotation matrix estimates associated with the repeated first
indicates the amount of misregistration. This error can be distributed evenly across the whole
sequence by taking the quotient of the two quaternions associated with these rotations and
dividing this “error quaternion” by the number of images in the sequence (assuming relatively
constant inter-frame rotations). We can also update the estimated focal length based on the
amount of misregistration. To do this, we first convert the error quaternion into a gap angle,
6, and then update the focal length using the equation f = f(1 — 6,/360°).

Figure 9.5a shows the end of registered image sequence and the first image. There is a
big gap between the last image and the first which are in fact the same image. The gap is
32° because the wrong estimate of focal length (f = 510) was used. Figure 9.5b shows the
registration after closing the gap with the correct focal length (f = 468). Notice that both
mosaics show very little visual misregistration (except at the gap), yet Figure 9.5a has been
computed using a focal length that has 9% error. Related approaches have been developed by
Hartley (1994b), McMillan and Bishop (1995), Stein (1995), and Kang and Weiss (1997) to
solve the focal length estimation problem using pure panning motion and cylindrical images.

436 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(b)

Figure 9.5 Gap closing (Szeliski and Shum 1997) © 1997 ACM: (a) A gap is visible when
the focal length is wrong (f = 510). (b) No gap is visible for the correct focal length
(f = 468).

Unfortunately, this particular gap-closing heuristic only works for the kind of “one-dimensional”
panorama where the camera is continuously turning in the same direction. In Section 9.2, we
describe a different approach to removing gaps and overlaps that works for arbitrary camera
motions.

9.1.5 Application: Video summarization and compression

An interesting application of image stitching is the ability to summarize and compress videos
taken with a panning camera. This application was first suggested by Teodosio and Bender
(1993), who called their mosaic-based summaries salient stills. These ideas were then ex-
tended by Irani, Hsu, and Anandan (1995), Kumar, Anandan, Irani et al. (1995), and Irani and
Anandan (1998) to additional applications, such as video compression and video indexing.
While these early approaches used affine motion models and were therefore restricted to long
focal lengths, the techniques were generalized by Lee, ge Chen, lung Bruce Lin et al. (1997)
to full eight-parameter homographies and incorporated into the MPEG-4 video compression
standard, where the stitched background layers were called video sprites (Figure 9.6).

While video stitching is in many ways a straightforward generalization of multiple-image
stitching (Steedly, Pal, and Szeliski 2005; Baudisch, Tan, Steedly e al. 2006), the potential
presence of large amounts of independent motion, camera zoom, and the desire to visualize
dynamic events impose additional challenges. For example, moving foreground objects can
often be removed using median filtering. Alternatively, foreground objects can be extracted
into a separate layer (Sawhney and Ayer 1996) and later composited back into the stitched
panoramas, sometimes as multiple instances to give the impressions of a “Chronophotograph”

9.1 Motion models 437

Figure 9.6 Video stitching the background scene to create a single sprite image that can be
transmitted and used to re-create the background in each frame (Lee, ge Chen, lung Bruce Lin
et al. 1997) © 1997 IEEE.

(Massey and Bender 1996) and sometimes as video overlays (Irani and Anandan 1998).
Videos can also be used to create animated panoramic video textures (Section 13.5.2), in
which different portions of a panoramic scene are animated with independently moving video
loops (Agarwala, Zheng, Pal ef al. 2005; Rav-Acha, Pritch, Lischinski et al. 2005), or to shine
“video flashlights” onto a composite mosaic of a scene (Sawhney, Arpa, Kumar et al. 2002).

Video can also provide an interesting source of content for creating panoramas taken from
moving cameras. While this invalidates the usual assumption of a single point of view (opti-
cal center), interesting results can still be obtained. For example, the VideoBrush system of
Sawhney, Kumar, Gendel et al. (1998) uses thin strips taken from the center of the image to
create a panorama taken from a horizontally moving camera. This idea can be generalized
to other camera motions and compositing surfaces using the concept of mosaics on adap-
tive manifold (Peleg, Rousso, Rav-Acha et al. 2000), and also used to generate panoramic
stereograms (Peleg, Ben-Ezra, and Pritch 2001). Related ideas have been used to create
panoramic matte paintings for multi-plane cel animation (Wood, Finkelstein, Hughes et al.
1997), for creating stitched images of scenes with parallax (Kumar, Anandan, Irani et al
1995), and as 3D representations of more complex scenes using multiple-center-of-projection
images (Rademacher and Bishop 1998) and multi-perspective panoramas (Roméan, Garg, and
Levoy 2004; Roman and Lensch 2006; Agarwala, Agrawala, Cohen et al. 2006).

Another interesting variant on video-based panoramas are concentric mosaics (Section 13.3.3)
(Shum and He 1999). Here, rather than trying to produce a single panoramic image, the com-
plete original video is kept and used to re-synthesize views (from different camera origins)
using ray remapping (light field rendering), thus endowing the panorama with a sense of 3D

438 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

P (X.Y.Z)

(sind cosg, sing,

5
'4? C0S6 Ccosp
W

(b)

Figure 9.7 Projection from 3D to (a) cylindrical and (b) spherical coordinates.

depth. The same data set can also be used to explicitly reconstruct the depth using multi-
baseline stereo (Peleg, Ben-Ezra, and Pritch 2001; Li, Shum, Tang ef al. 2004; Zheng, Kang,
Cohen et al. 2007).

9.1.6 Cylindrical and spherical coordinates

An alternative to using homographies or 3D motions to align images is to first warp the images
into cylindrical coordinates and then use a pure translational model to align them (Chen 1995;
Szeliski 1996). Unfortunately, this only works if the images are all taken with a level camera
or with a known tilt angle.

Assume for now that the camera is in its canonical position, i.e., its rotation matrix is the
identity, R = I, so that the optical axis is aligned with the z axis and the y axis is aligned
vertically. The 3D ray corresponding to an (z, y) pixel is therefore (z,y, f).

We wish to project this image onto a cylindrical surface of unit radius (Szeliski 1996).
Points on this surface are parameterized by an angle 6 and a height h, with the 3D cylindrical
coordinates corresponding to (6, h) given by

(sin@, h,cos0) < (z,y, f), 9.12)

as shown in Figure 9.7a. From this correspondence, we can compute the formula for the
warped or mapped coordinates (Szeliski and Shum 1997),

/

¥ = sf#=stan"!

) (9.13)

N

Y

<
I
V)
>
|
VA

9.14)

where s is an arbitrary scaling factor (sometimes called the radius of the cylinder) that can be
set to s = f to minimize the distortion (scaling) near the center of the image.”> The inverse of

5 The scale can also be set to a larger or smaller value for the final compositing surface, depending on the desired
output panorama resolution—see Section 9.3.

9.1 Motion models 439

this mapping equation is given by

!/

r = ftanﬁzftanx—, (9.15)
s

/ / /
y = h\/:c2+f2:y—f\/lthaan’/s:fy—secx—. (9.16)
s s s

Images can also be projected onto a spherical surface (Szeliski and Shum 1997), which
is useful if the final panorama includes a full sphere or hemisphere of views, instead of just
a cylindrical strip. In this case, the sphere is parameterized by two angles (6, ¢), with 3D
spherical coordinates given by

(sin @ cos ¢, sin ¢, cos 0 cos @) x (z,y, f), (9.17)

as shown in Figure 9.7b.% The correspondence between coordinates is now given by (Szeliski
and Shum 1997):

r = sf=stan"! ?, (9.18)
" = sp=stan"! L, (9.19)
y ¢ RN
while the inverse is given by
.T/
x = ftanf = ftan > (9.20)

/ / /
Yy \/x2+f2tan¢>:tany—f 1+tan2x’/s:ftany—secx—. 9.21)
s s s

Note that it may be simpler to generate a scaled (z,y, z) direction from Equation (9.17)
followed by a perspective division by z and a scaling by f.

Cylindrical image stitching algorithms are most commonly used when the camera is
known to be level and only rotating around its vertical axis (Chen 1995). Under these condi-
tions, images at different rotations are related by a pure horizontal translation.” This makes
it attractive as an initial class project in an introductory computer vision course, since the
full complexity of the perspective alignment algorithm (Sections 6.1, 8.2, and 9.1.3) can be
avoided. Figure 9.8 shows how two cylindrically warped images from a leveled rotational
panorama are related by a pure translation (Szeliski and Shum 1997).

Professional panoramic photographers often use pan-tilt heads that make it easy to control
the tilt and to stop at specific defents in the rotation angle. Motorized rotation heads are also

6 Note that these are not the usual spherical coordinates, first presented in Equation (2.8). Here, the y axis points
at the north pole instead of the z axis, since we are used to viewing images taken horizontally, i.e., with the y axis
pointing in the direction of the gravity vector.

7Small vertical tilts can sometimes be compensated for with vertical translations.

440 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 9.8 A cylindrical panorama (Szeliski and Shum 1997) (©) 1997 ACM: (a) two cylin-
drically warped images related by a horizontal translation; (b) part of a cylindrical panorama
composited from a sequence of images.

>

Figure 9.9 A spherical panorama constructed from 54 photographs (Szeliski and Shum
1997) © 1997 ACM.

sometimes used for the acquisition of larger panoramas (Kopf, Uyttendaele, Deussen et al.
2007).% Not only do they ensure a uniform coverage of the visual field with a desired amount
of image overlap but they also make it possible to stitch the images using cylindrical or
spherical coordinates and pure translations. In this case, pixel coordinates (z, y, f) must first
be rotated using the known tilt and panning angles before being projected into cylindrical
or spherical coordinates (Chen 1995). Having a roughly known panning angle also makes it
easier to compute the alignment, since the rough relative positioning of all the input images is
known ahead of time, enabling a reduced search range for alignment. Figure 9.9 shows a full
3D rotational panorama unwrapped onto the surface of a sphere (Szeliski and Shum 1997).

One final coordinate mapping worth mentioning is the polar mapping, where the north

8See also http://gigapan.org.

http://gigapan.org

9.2 Global alignment 441

pole lies along the optical axis rather than the vertical axis,
(cos @ sin ¢, sin 0 sin ¢, cos @) = s (x,y, 2). (9.22)

In this case, the mapping equations become

' = s¢pcosl = sZ tan~! C, (9.23)
r z
y = spsinf = s% tan~* ; (9.24)

where r = /22 + y? is the radial distance in the (z,y) plane and s¢ plays a similar role
in the («’,y’) plane. This mapping provides an attractive visualization surface for certain
kinds of wide-angle panoramas and is also a good model for the distortion induced by fisheye
lenses, as discussed in Section 2.1.6. Note how for small values of (z,y), the mapping
equations reduce to =’ = sx/z, which suggests that s plays a role similar to the focal length

f.

9.2 Global alignment

So far, we have discussed how to register pairs of images using a variety of motion models. In
most applications, we are given more than a single pair of images to register. The goal is then
to find a globally consistent set of alignment parameters that minimize the mis-registration
between all pairs of images (Szeliski and Shum 1997; Shum and Szeliski 2000; Sawhney and
Kumar 1999; Coorg and Teller 2000).

In this section, we extend the pairwise matching criteria (6.2, 8.1, and 8.50) to a global
energy function that involves all of the per-image pose parameters (Section 9.2.1). Once
we have computed the global alignment, we often need to perform local adjustments, such
as parallax removal, to reduce double images and blurring due to local mis-registrations
(Section 9.2.2). Finally, if we are given an unordered set of images to register, we need to
discover which images go together to form one or more panoramas. This process of panorama
recognition is described in Section 9.2.3.

9.2.1 Bundle adjustment

One way to register a large number of images is to add new images to the panorama one
at a time, aligning the most recent image with the previous ones already in the collection
(Szeliski and Shum 1997) and discovering, if necessary, which images it overlaps (Sawhney
and Kumar 1999). In the case of 360° panoramas, accumulated error may lead to the presence
of a gap (or excessive overlap) between the two ends of the panorama, which can be fixed

442 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

by stretching the alignment of all the images using a process called gap closing (Szeliski and
Shum 1997). However, a better alternative is to simultaneously align all the images using a
least-squares framework to correctly distribute any mis-registration errors.

The process of simultaneously adjusting pose parameters for a large collection of overlap-
ping images is called bundle adjustment in the photogrammetry community (Triggs, McLauch-
lan, Hartley et al. 1999). In computer vision, it was first applied to the general structure from
motion problem (Szeliski and Kang 1994) and then later specialized for panoramic image
stitching (Shum and Szeliski 2000; Sawhney and Kumar 1999; Coorg and Teller 2000).

In this section, we formulate the problem of global alignment using a feature-based ap-
proach, since this results in a simpler system. An equivalent direct approach can be obtained
either by dividing images into patches and creating a virtual feature correspondence for each
one (as discussed in Section 9.2.4 and by Shum and Szeliski (2000)) or by replacing the
per-feature error metrics with per-pixel metrics.

Consider the feature-based alignment problem given in Equation (6.2), i.e.,

Epairwise—rs = »_ |7l = || (zs; p) — &I (9.25)
For multi-image alignment, instead of having a single collection of pairwise feature corre-
spondences, {(x;, Z;)}, we have a collection of n features, with the location of the ith feature
point in the jth image denoted by «;; and its scalar confidence (i.e., inverse variance) denoted
by ¢;;.° Each image also has some associated pose parameters.

In this section, we assume that this pose consists of a rotation matrix J2; and a focal
length f;, although formulations in terms of homographies are also possible (Szeliski and
Shum 1997; Sawhney and Kumar 1999). The equation mapping a 3D point x; into a point
x;; in frame j can be re-written from Equations (2.68) and (9.5) as

&~ K;jRjz; and x; ~ R, 'K 'Z;;, (9.26)
where K; = diag(f;, f;,1) is the simplified form of the calibration matrix. The motion
mapping a point x;; from frame j into a point x;;, in frame k is similarly given by

&y ~ HyjZiy = Ki Ry R K ' @5 (9.27)
Given an initial set of { (R}, f;)} estimates obtained from chaining pairwise alignments, how
do we refine these estimates?

One approach is to directly extend the pairwise energy Epairwise—1,s (9.25) to a multiview
formulation,

Ean—pairs—2D = Z Zcijcikn-'iik(iij; R;., fi, Ri, fx) — &u?, (9.28)
i jk

9 Features that are not seen in image j have c;; = 0. We can also use 2 X 2 inverse covariance matrices E;jl in
place of c;;, as shown in Equation (6.11).

9.2 Global alignment 443

where the x;;, function is the predicted location of feature ¢ in frame k given by (9.27),
Z;; is the observed location, and the “2D” in the subscript indicates that an image-plane
error is being minimized (Shum and Szeliski 2000). Note that since &;, depends on the &;;
observed value, we actually have an errors-in-variable problem, which in principle requires
more sophisticated techniques than least squares to solve (Van Huffel and Lemmerling 2002;
Matei and Meer 2006). However, in practice, if we have enough features, we can directly
minimize the above quantity using regular non-linear least squares and obtain an accurate
multi-frame alignment.

While this approach works well in practice, it suffers from two potential disadvantages.
First, since a summation is taken over all pairs with corresponding features, features that are
observed many times are overweighted in the final solution. (In effect, a feature observed m
times gets counted (’;) times instead of m times.) Second, the derivatives of &;;, with respect
to the {(R;, f;)} are a little cumbersome, although using the incremental correction to R;
introduced in Section 9.1.3 makes this more tractable.

An alternative way to formulate the optimization is to use true bundle adjustment, i.e., to
solve not only for the pose parameters {(R;, f;)} but also for the 3D point positions {x;},

Bgaon = Y cijll @i (@i Ry, f5) — &1, (9.29)
i

where Z;;(x;; R;, f;) is given by (9.26). The disadvantage of full bundle adjustment is that
there are more variables to solve for, so each iteration and also the overall convergence may
be slower. (Imagine how the 3D points need to “shift” each time some rotation matrices are
updated.) However, the computational complexity of each linearized Gauss—Newton step can
be reduced using sparse matrix techniques (Section 7.4.1) (Szeliski and Kang 1994; Triggs,
McLauchlan, Hartley et al. 1999; Hartley and Zisserman 2004).

An alternative formulation is to minimize the error in 3D projected ray directions (Shum
and Szeliski 2000), i.e.,

Epa-sp =Y cijl|®:(@ij; Ry, f;) — x>, (9.30)
i

where Z;(x;;; R;, f;) is given by the second half of (9.26). This has no particular advantage
over (9.29). In fact, since errors are being minimized in 3D ray space, there is a bias towards
estimating longer focal lengths, since the angles between rays become smaller as f increases.

However, if we eliminate the 3D rays «;, we can derive a pairwise energy formulated in
3D ray space (Shum and Szeliski 2000),

Eai—pairs—3D = Z Zcijcikﬂi'i(ﬁ?ij; R, f;) — &i(&ik; R, 1) |- (9.31)

i gk

444 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

This results in the simplest set of update equations (Shum and Szeliski 2000), since the fj, can
be folded into the creation of the homogeneous coordinate vector as in Equation (9.7). Thus,
even though this formula over-weights features that occur more frequently, it is the method
used by Shum and Szeliski (2000) and Brown, Szeliski, and Winder (2005). In order to reduce
the bias towards longer focal lengths, we multiply each residual (3D error) by \/fJT , which
is similar to projecting the 3D rays into a “virtual camera” of intermediate focal length.

Up vector selection. As mentioned above, there exists a global ambiguity in the pose of the
3D cameras computed by the above methods. While this may not appear to matter, people
prefer that the final stitched image is “upright” rather than twisted or tilted. More concretely,
people are used to seeing photographs displayed so that the vertical (gravity) axis points
straight up in the image. Consider how you usually shoot photographs: while you may pan
and tilt the camera any which way, you usually keep the horizontal edge of your camera (its
x-axis) parallel to the ground plane (perpendicular to the world gravity direction).

Mathematically, this constraint on the rotation matrices can be expressed as follows. Re-
call from Equation (9.26) that the 3D to 2D projection is given by

ii’ik ~ KkRk:Bi. (9.32)

We wish to post-multiply each rotation matrix R, by a global rotation R, such that the pro-
jection of the global y-axis, 7 = (0, 1,0) is perpendicular to the image z-axis, 2 = (1,0,0).'°
This constraint can be written as

i"RyR.j =0 (9.33)

(note that the scaling by the calibration matrix is irrelevant here). This is equivalent to re-
quiring that the first row of Ry, Tx9 = iTRk be perpendicular to the second column of R,
re1 = R.). This set of constraints (one per input image) can be written as a least squares
problem,

Tg1 = arg m#n Z(rTrko)Q = arg mTi.n rT [Z rkorg()] 7. (9.34)
k k
Thus, 74 is the smallest eigenvector of the scatter or moment matrix spanned by the indi-
vidual camera rotation z-vectors, which should generally be of the form (¢, 0, s) when the
cameras are upright.

To fully specify the R, global rotation, we need to specify one additional constraint. This
is related to the view selection problem discussed in Section 9.3.1. One simple heuristic is to

10 Note that here we use the convention common in computer graphics that the vertical world axis corresponds to
y. This is a natural choice if we wish the rotation matrix associated with a “regular” image taken horizontally to be
the identity, rather than a 90° rotation around the x-axis.

9.2 Global alignment 445

. N . . - ~T
prefer the average z-axis of the individual rotation matrices, k = >, k Ry, to be close to
the world z-axis, rg> = Rgk. We can therefore compute the full rotation matrix R, in three
steps:

1. 741 = min eigenvector (3, TkoT1);
2. rgo = N((Zk mh2) X T1);
3. Tg2 = Tgo X Tgl,

where A/ (v) = v/||v|| normalizes a vector v.

9.2.2 Parallax removal

Once we have optimized the global orientations and focal lengths of our cameras, we may find
that the images are still not perfectly aligned, i.e., the resulting stitched image looks blurry
or ghosted in some places. This can be caused by a variety of factors, including unmodeled
radial distortion, 3D parallax (failure to rotate the camera around its optical center), small
scene motions such as waving tree branches, and large-scale scene motions such as people
moving in and out of pictures.

Each of these problems can be treated with a different approach. Radial distortion can be
estimated (potentially ahead of time) using one of the techniques discussed in Section 2.1.6.
For example, the plumb-line method (Brown 1971; Kang 2001; El-Melegy and Farag 2003)
adjusts radial distortion parameters until slightly curved lines become straight, while mosaic-
based approaches adjust them until mis-registration is reduced in image overlap areas (Stein
1997; Sawhney and Kumar 1999).

3D parallax can be handled by doing a full 3D bundle adjustment, i.e., by replacing the
projection equation (9.26) used in Equation (9.29) with Equation (2.68), which models cam-
era translations. The 3D positions of the matched feature points and cameras can then be si-
multaneously recovered, although this can be significantly more expensive than parallax-free
image registration. Once the 3D structure has been recovered, the scene could (in theory) be
projected to a single (central) viewpoint that contains no parallax. However, in order to do
this, dense stereo correspondence needs to be performed (Section 11.3) (Li, Shum, Tang et al.
2004; Zheng, Kang, Cohen et al. 2007), which may not be possible if the images contain only
partial overlap. In that case, it may be necessary to correct for parallax only in the overlap
areas, which can be accomplished using a multi-perspective plane sweep (MPPS) algorithm
(Kang, Szeliski, and Uyttendaele 2004; Uyttendaele, Criminisi, Kang et al. 2004).

When the motion in the scene is very large, i.e., when objects appear and disappear com-
pletely, a sensible solution is to simply select pixels from only one image at a time as the
source for the final composite (Milgram 1977; Davis 1998; Agarwala, Dontcheva, Agrawala

446 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

et al. 2004), as discussed in Section 9.3.2. However, when the motion is reasonably small (on
the order of a few pixels), general 2D motion estimation (optical flow) can be used to perform
an appropriate correction before blending using a process called local alignment (Shum and
Szeliski 2000; Kang, Uyttendaele, Winder et al. 2003). This same process can also be used
to compensate for radial distortion and 3D parallax, although it uses a weaker motion model
than explicitly modeling the source of error and may, therefore, fail more often or introduce
unwanted distortions.

The local alignment technique introduced by Shum and Szeliski (2000) starts with the
global bundle adjustment (9.31) used to optimize the camera poses. Once these have been
estimated, the desired location of a 3D point x; can be estimated as the average of the back-
projected 3D locations,

T;~ ZCiji‘i(ii'ij;Rj,fj)/Z Cij » 9.35)
J j

which can be projected into each image j to obtain a target location x;;. The difference
between the target locations &;; and the original features x;; provide a set of local motion
estimates

Ui = Tjj — Ty, (9.36)
which can be interpolated to form a dense correction field u; (). In their system, Shum and
Szeliski (2000) use an inverse warping algorithm where the sparse —u;; values are placed at
the new target locations Z;;, interpolated using bilinear kernel functions (Nielson 1993) and
then added to the original pixel coordinates when computing the warped (corrected) image.
In order to get a reasonably dense set of features to interpolate, Shum and Szeliski (2000)
place a feature point at the center of each patch (the patch size controls the smoothness in
the local alignment stage), rather than relying of features extracted using an interest operator
(Figure 9.10).

An alternative approach to motion-based de-ghosting was proposed by Kang, Uytten-
daele, Winder ez al. (2003), who estimate dense optical flow between each input image and a
central reference image. The accuracy of the flow vector is checked using a photo-consistency
measure before a given warped pixel is considered valid and is used to compute a high dy-
namic range radiance estimate, which is the goal of their overall algorithm. The requirement
for a reference image makes their approach less applicable to general image mosaicing, al-
though an extension to this case could certainly be envisaged.

9.2.3 Recognizing panoramas

The final piece needed to perform fully automated image stitching is a technique to recognize
which images actually go together, which Brown and Lowe (2007) call recognizing panora-

9.2 Global alignment 447

(b) ()

Figure 9.10 Deghosting a mosaic with motion parallax (Shum and Szeliski 2000) (© 2000
IEEE: (a) composite with parallax; (b) after a single deghosting step (patch size 32); (c) after
multiple steps (sizes 32, 16 and 8).

mas. If the user takes images in sequence so that each image overlaps its predecessor and
also specifies the first and last images to be stitched, bundle adjustment combined with the
process of topology inference can be used to automatically assemble a panorama (Sawhney
and Kumar 1999). However, users often jump around when taking panoramas, e.g., they
may start a new row on top of a previous one, jump back to take a repeat shot, or create
360° panoramas where end-to-end overlaps need to be discovered. Furthermore, the ability
to discover multiple panoramas taken by a user over an extended period of time can be a big
convenience.

To recognize panoramas, Brown and Lowe (2007) first find all pairwise image overlaps
using a feature-based method and then find connected components in the overlap graph to
“recognize” individual panoramas (Figure 9.11). The feature-based matching stage first ex-
tracts scale invariant feature transform (SIFT) feature locations and feature descriptors (Lowe
2004) from all the input images and places them in an indexing structure, as described in Sec-
tion 4.1.3. For each image pair under consideration, the nearest matching neighbor is found
for each feature in the first image, using the indexing structure to rapidly find candidates and
then comparing feature descriptors to find the best match. RANSAC is used to find a set of in-
lier matches; pairs of matches are used to hypothesize similarity motion models that are then
used to count the number of inliers. (A more recent RANSAC algorithm tailored specifically
for rotational panoramas is described by Brown, Hartley, and Nistér (2007).)

In practice, the most difficult part of getting a fully automated stitching algorithm to
work is deciding which pairs of images actually correspond to the same parts of the scene.
Repeated structures such as windows (Figure 9.12) can lead to false matches when using
a feature-based approach. One way to mitigate this problem is to perform a direct pixel-
based comparison between the registered images to determine if they actually are different
views of the same scene. Unfortunately, this heuristic may fail if there are moving objects
in the scene (Figure 9.13). While there is no magic bullet for this problem, short of full
scene understanding, further improvements can likely be made by applying domain-specific

448 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 9.11 Recognizing panoramas (Brown, Szeliski, and Winder 2005), figures cour-
tesy of Matthew Brown: (a) input images with pairwise matches; (b) images grouped into
connected components (panoramas); (c) individual panoramas registered and blended into
stitched composites.

9.2 Global alignment 449

Figure 9.12 Matching errors (Brown, Szeliski, and Winder 2004): accidental matching of
several features can lead to matches between pairs of images that do not actually overlap.

Figure 9.13 Validation of image matches by direct pixel error comparison can fail when the
scene contains moving objects (Uyttendaele, Eden, and Szeliski 2001) (©) 2001 IEEE.

450 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

heuristics, such as priors on typical camera motions as well as machine learning techniques
applied to the problem of match validation.

9.2.4 Direct vs. feature-based alignment

Given that there exist these two approaches to aligning images, which is preferable?

Early feature-based methods would get confused in regions that were either too textured
or not textured enough. The features would often be distributed unevenly over the images,
thereby failing to match image pairs that should have been aligned. Furthermore, establishing
correspondences relied on simple cross-correlation between patches surrounding the feature
points, which did not work well when the images were rotated or had foreshortening due to
homographies.

Today, feature detection and matching schemes are remarkably robust and can even be
used for known object recognition from widely separated views (Lowe 2004). Features not
only respond to regions of high “cornerness” (Forstner 1986; Harris and Stephens 1988) but
also to “blob-like” regions (Lowe 2004), and uniform areas (Matas, Chum, Urban et al. 2004,
Tuytelaars and Van Gool 2004). Furthermore, because they operate in scale-space and use a
dominant orientation (or orientation invariant descriptors), they can match images that differ
in scale, orientation, and even foreshortening. Our own experience in working with feature-
based approaches is that if the features are well distributed over the image and the descriptors
reasonably designed for repeatability, enough correspondences to permit image stitching can
usually be found (Brown, Szeliski, and Winder 2005).

The biggest disadvantage of direct pixel-based alignment techniques is that they have a
limited range of convergence. Even though they can be used in a hierarchical (coarse-to-
fine) estimation framework, in practice it is hard to use more than two or three levels of a
pyramid before important details start to be blurred away.'! For matching sequential frames
in a video, direct approaches can usually be made to work. However, for matching partially
overlapping images in photo-based panoramas or for image collections where the contrast or
content varies too much, they fail too often to be useful and feature-based approaches are
therefore preferred.

9.3 Compositing

Once we have registered all of the input images with respect to each other, we need to decide
how to produce the final stitched mosaic image. This involves selecting a final compositing
surface (flat, cylindrical, spherical, etc.) and view (reference image). It also involves selecting

' Fourier-based correlation (Szeliski 1996; Szeliski and Shum 1997) can extend this range but requires cylindrical
images or motion prediction to be useful.

9.3 Compositing 451

which pixels contribute to the final composite and how to optimally blend these pixels to
minimize visible seams, blur, and ghosting.

In this section, we review techniques that address these problems, namely compositing
surface parameterization, pixel and seam selection, blending, and exposure compensation.
My emphasis is on fully automated approaches to the problem. Since the creation of high-
quality panoramas and composites is as much an artistic endeavor as a computational one,
various interactive tools have been developed to assist this process (Agarwala, Dontcheva,
Agrawala et al. 2004; Li, Sun, Tang et al. 2004; Rother, Kolmogorov, and Blake 2004).
Some of these are covered in more detail in Section 10.4.

9.3.1 Choosing a compositing surface

The first choice to be made is how to represent the final image. If only a few images are
stitched together, a natural approach is to select one of the images as the reference and to
then warp all of the other images into its reference coordinate system. The resulting com-
posite is sometimes called a flatr panorama, since the projection onto the final surface is still
a perspective projection, and hence straight lines remain straight (which is often a desirable
attribute).'?

For larger fields of view, however, we cannot maintain a flat representation without ex-
cessively stretching pixels near the border of the image. (In practice, flat panoramas start
to look severely distorted once the field of view exceeds 90° or so.) The usual choice for
compositing larger panoramas is to use a cylindrical (Chen 1995; Szeliski 1996) or spherical
(Szeliski and Shum 1997) projection, as described in Section 9.1.6. In fact, any surface used
for environment mapping in computer graphics can be used, including a cube map, which
represents the full viewing sphere with the six square faces of a cube (Greene 1986; Szeliski
and Shum 1997). Cartographers have also developed a number of alternative methods for
representing the globe (Bugayevskiy and Snyder 1995).

The choice of parameterization is somewhat application dependent and involves a trade-
off between keeping the local appearance undistorted (e.g., keeping straight lines straight)
and providing a reasonably uniform sampling of the environment. Automatically making
this selection and smoothly transitioning between representations based on the extent of the
panorama is an active area of current research (Kopf, Uyttendaele, Deussen et al. 2007).

An interesting recent development in panoramic photography has been the use of stereo-
graphic projections looking down at the ground (in an outdoor scene) to create “little planet”
renderings.'3

12 Recently, some techniques have been developed to straighten curved lines in cylindrical and spherical panora-
mas (Carroll, Agrawala, and Agarwala 2009; Kopf, Lischinski, Deussen et al. 2009).
13 These are inspired by The Little Prince by Antoine De Saint-Exupery. Go to http://www.flickr.com and search

http://www.flickr.com

452 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

View selection. Once we have chosen the output parameterization, we still need to deter-
mine which part of the scene will be centered in the final view. As mentioned above, for a flat
composite, we can choose one of the images as a reference. Often, a reasonable choice is the
one that is geometrically most central. For example, for rotational panoramas represented as
a collection of 3D rotation matrices, we can choose the image whose z-axis is closest to the
average z-axis (assuming a reasonable field of view). Alternatively, we can use the average
z-axis (or quaternion, but this is trickier) to define the reference rotation matrix.

For larger, e.g., cylindrical or spherical, panoramas, we can use the same heuristic if a
subset of the viewing sphere has been imaged. In the case of full 360° panoramas, a better
choice might be to choose the middle image from the sequence of inputs, or sometimes the
first image, assuming this contains the object of greatest interest. In all of these cases, having
the user control the final view is often highly desirable. If the “up vector” computation de-
scribed in Section 9.2.1 is working correctly, this can be as simple as panning over the image
or setting a vertical “center line” for the final panorama.

Coordinate transformations. After selecting the parameterization and reference view, we
still need to compute the mappings between the input and output pixels coordinates.

If the final compositing surface is flat (e.g., a single plane or the face of a cube map)
and the input images have no radial distortion, the coordinate transformation is the simple
homography described by (9.5). This kind of warping can be performed in graphics hardware
by appropriately setting texture mapping coordinates and rendering a single quadrilateral.

If the final composite surface has some other analytic form (e.g., cylindrical or spherical),
we need to convert every pixel in the final panorama into a viewing ray (3D point) and then
map it back into each image according to the projection (and optionally radial distortion)
equations. This process can be made more efficient by precomputing some lookup tables,
e.g., the partial trigonometric functions needed to map cylindrical or spherical coordinates to
3D coordinates or the radial distortion field at each pixel. It is also possible to accelerate this
process by computing exact pixel mappings on a coarser grid and then interpolating these
values.

When the final compositing surface is a texture-mapped polyhedron, a slightly more so-
phisticated algorithm must be used. Not only do the 3D and texture map coordinates have to
be properly handled, but a small amount of overdraw outside the triangle footprints in the tex-
ture map is necessary, to ensure that the texture pixels being interpolated during 3D rendering
have valid values (Szeliski and Shum 1997).

Sampling issues. While the above computations can yield the correct (fractional) pixel
addresses in each input image, we still need to pay attention to sampling issues. For example,

for “little planet projection”.

9.3 Compositing 453

if the final panorama has a lower resolution than the input images, pre-filtering the input
images is necessary to avoid aliasing. These issues have been extensively studied in both the
image processing and computer graphics communities. The basic problem is to compute the
appropriate pre-filter, which depends on the distance (and arrangement) between neighboring
samples in a source image. As discussed in Sections 3.5.2 and 3.6.1, various approximate
solutions, such as MIP mapping (Williams 1983) or elliptically weighted Gaussian averaging
(Greene and Heckbert 1986) have been developed in the graphics community. For highest
visual quality, a higher order (e.g., cubic) interpolator combined with a spatially adaptive pre-
filter may be necessary (Wang, Kang, Szeliski ef al. 2001). Under certain conditions, it may
also be possible to produce images with a higher resolution than the input images using the
process of super-resolution (Section 10.3).

9.3.2 Pixel selection and weighting (de-ghosting)

Once the source pixels have been mapped onto the final composite surface, we must still
decide how to blend them in order to create an attractive-looking panorama. If all of the
images are in perfect registration and identically exposed, this is an easy problem, i.e., any
pixel or combination will do. However, for real images, visible seams (due to exposure
differences), blurring (due to mis-registration), or ghosting (due to moving objects) can occur.

Creating clean, pleasing-looking panoramas involves both deciding which pixels to use
and how to weight or blend them. The distinction between these two stages is a little fluid,
since per-pixel weighting can be thought of as a combination of selection and blending. In
this section, we discuss spatially varying weighting, pixel selection (seam placement), and
then more sophisticated blending.

Feathering and center-weighting. The simplest way to create a final composite is to sim-
ply take an average value at each pixel,

Cl@) =Y wi(@) () / > wi(), 9.37)
k k

where I, (z) are the warped (re-sampled) images and wy,(z) is 1 at valid pixels and 0 else-
where. On computer graphics hardware, this kind of summation can be performed in an
accumulation buffer (using the A channel as the weight).

Simple averaging usually does not work very well, since exposure differences, mis-
registrations, and scene movement are all very visible (Figure 9.14a). If rapidly moving
objects are the only problem, taking a median filter (which is a kind of pixel selection opera-
tor) can often be used to remove them (Figure 9.14b) (Irani and Anandan 1998). Conversely,
center-weighting (discussed below) and minimum likelihood selection (Agarwala, Dontcheva,

454 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(2 (h)

Figure 9.14 Final composites computed by a variety of algorithms (Szeliski 2006a): (a)
average, (b) median, (c) feathered average, (d) p-norm p = 10, (e) Voronoi, (f) weighted
ROD vertex cover with feathering, (g) graph cut seams with Poisson blending and (h) with
pyramid blending.

9.3 Compositing 455

Agrawala et al. 2004) can sometimes be used to retain multiple copies of a moving object
(Figure 9.17).

A better approach to averaging is to weight pixels near the center of the image more
heavily and to down-weight pixels near the edges. When an image has some cutout regions,
down-weighting pixels near the edges of both cutouts and the image is preferable. This can
be done by computing a distance map or grassfire transform,

wy(x) = arg myin{HyH | I.(z + y) is invalid }, (9.38)

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel (Sec-
tion 3.3.3). The Euclidean distance map can be efficiently computed using a two-pass raster
algorithm (Danielsson 1980; Borgefors 1986).

Weighted averaging with a distance map is often called feathering (Szeliski and Shum
1997; Chen and Klette 1999; Uyttendaele, Eden, and Szeliski 2001) and does a reasonable job
of blending over exposure differences. However, blurring and ghosting can still be problems
(Figure 9.14¢). Note that weighted averaging is not the same as compositing the individual
images with the classic over operation (Porter and Duff 1984; Blinn 1994a), even when using
the weight values (normalized to sum up to one) as alpha (translucency) channels. This is
because the over operation attenuates the values from more distant surfaces and, hence, is not
equivalent to a direct sum.

One way to improve feathering is to raise the distance map values to some large power,
i.e., to use wf(x) in Equation (9.37). The weighted averages then become dominated by
the larger values, i.e., they act somewhat like a p-norm. The resulting composite can often
provide a reasonable tradeoff between visible exposure differences and blur (Figure 9.14d).

In the limit as p — oo, only the pixel with the maximum weight is selected,

C(x) = Ly (), (9.39)

where
[=arg max wy (x) (9.40)

is the label assignment or pixel selection function that selects which image to use at each
pixel. This hard pixel selection process produces a visibility mask-sensitive variant of the fa-
miliar Voronoi diagram, which assigns each pixel to the nearest image center in the set (Wood,
Finkelstein, Hughes ef al. 1997; Peleg, Rousso, Rav-Acha ef al. 2000). The resulting com-
posite, while useful for artistic guidance and in high-overlap panoramas (manifold mosaics)
tends to have very hard edges with noticeable seams when the exposures vary (Figure 9.14e).

Xiong and Turkowski (1998) use this Voronoi idea (local maximum of the grassfire trans-
form) to select seams for Laplacian pyramid blending (which is discussed below). However,

456 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

D] e

(a) (b) ()

O=0=0

Figure 9.15 Computation of regions of difference (RODs) (Uyttendaele, Eden, and Szeliski
2001) (© 2001 IEEE: (a) three overlapping images with a moving face; (b) corresponding
RODs; (¢) graph of coincident RODs.

since the seam selection is performed sequentially as new images are added in, some artifacts
can occur.

Optimal seam selection. Computing the Voronoi diagram is one way to select the seams
between regions where different images contribute to the final composite. However, Voronoi
images totally ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where the images agree, so that tran-
sitions from one source to another are not visible. In this way, the algorithm avoids “cutting
through” moving objects where a seam would look unnatural (Davis 1998). For a pair of
images, this process can be formulated as a simple dynamic program starting from one edge
of the overlap region and ending at the other (Milgram 1975, 1977; Davis 1998; Efros and
Freeman 2001).

When multiple images are being composited, the dynamic program idea does not readily
generalize. (For square texture tiles being composited sequentially, Efros and Freeman (2001)
run a dynamic program along each of the four tile sides.)

To overcome this problem, Uyttendaele, Eden, and Szeliski (2001) observed that, for
well-registered images, moving objects produce the most visible artifacts, namely translu-
cent looking ghosts. Their system therefore decides which objects to keep and which ones
to erase. First, the algorithm compares all overlapping input image pairs to determine re-
gions of difference (RODs) where the images disagree. Next, a graph is constructed with the
RODs as vertices and edges representing ROD pairs that overlap in the final composite (Fig-
ure 9.15). Since the presence of an edge indicates an area of disagreement, vertices (regions)
must be removed from the final composite until no edge spans a pair of remaining vertices.
The smallest such set can be computed using a vertex cover algorithm. Since several such
covers may exist, a weighted vertex cover is used instead, where the vertex weights are com-
puted by summing the feather weights in the ROD (Uyttendaele, Eden, and Szeliski 2001).
The algorithm therefore prefers removing regions that are near the edge of the image, which
reduces the likelihood that partially visible objects will appear in the final composite. (It is

9.3 Compositing 457

Figure 9.16 Photomontage (Agarwala, Dontcheva, Agrawala er al. 2004) (©) 2004 ACM.
From a set of five source images (of which four are shown on the left), Photomontage quickly
creates a composite family portrait in which everyone is smiling and looking at the camera
(right). Users simply flip through the stack and coarsely draw strokes using the designated
source image objective over the people they wish to add to the composite. The user-applied
strokes and computed regions (middle) are color-coded by the borders of the source images
on the left.

also possible to infer which object in a region of difference is the foreground object by the
“edginess” (pixel differences) across the ROD boundary, which should be higher when an
object is present (Herley 2005).) Once the desired excess regions of difference have been
removed, the final composite can be created by feathering (Figure 9.14f).

A different approach to pixel selection and seam placement is described by Agarwala,
Dontcheva, Agrawala et al. (2004). Their system computes the label assignment that opti-
mizes the sum of two objective functions. The first is a per-pixel image objective that deter-
mines which pixels are likely to produce good composites,

Cp =) D(=I(x)) (9:41)

where D(x,) is the data penalty associated with choosing image [at pixel . In their system,
users can select which pixels to use by “painting” over an image with the desired object or
appearance, which sets D(x,[) to a large value for all labels [other than the one selected
by the user (Figure 9.16). Alternatively, automated selection criteria can be used, such as
maximum likelihood, which prefers pixels that occur repeatedly in the background (for object
removal), or minimum likelihood for objects that occur infrequently, i.e., for moving object
retention. Using a more traditional center-weighted data term tends to favor objects that are
centered in the input images (Figure 9.17).

The second term is a seam objective that penalizes differences in labelings between adja-
cent images,

Cs= > Sxyl=)l(y)), (9.42)
(T, Y)eN

458 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 9.17 Set of five photos tracking a snowboarder’s jump stitched together into a seam-
less composite. Because the algorithm prefers pixels near the center of the image, multiple
copies of the boarder are retained.

where S(x,y,l5,1,) is the image-dependent interaction penalty or seam cost of placing a
seam between pixels x and y, and N is the set of Ay neighboring pixels. For example,
the simple color-based seam penalty used in (Kwatra, Schodl, Essa et al. 2003; Agarwala,
Dontcheva, Agrawala et al. 2004) can be written as

S(@,y. Lo, y) = |1, (@) — L, ()| + | 1o, (y) — L, (y)]|- 9.43)

More sophisticated seam penalties can also look at image gradients or the presence of image
edges (Agarwala, Dontcheva, Agrawala ef al. 2004). Seam penalties are widely used in other
computer vision applications such as stereo matching (Boykov, Veksler, and Zabih 2001) to
give the labeling function its coherence or smoothness. An alternative approach, which places
seams along strong consistent edges in overlapping images using a watershed computation is
described by Soille (2006).

The sum of these two objective functions gives rise to a Markov random field (MRF),
for which good optimization algorithms are described in Sections 3.7.2 and 5.5 and Ap-
pendix B.5. For label computations of this kind, the a-expansion algorithm developed by
Boykov, Veksler, and Zabih (2001) works particularly well (Szeliski, Zabih, Scharstein et al.
2008).

For the result shown in Figure 9.14g, Agarwala, Dontcheva, Agrawala et al. (2004) use
a large data penalty for invalid pixels and O for valid pixels. Notice how the seam placement
algorithm avoids regions of difference, including those that border the image and that might
result in objects being cut off. Graph cuts (Agarwala, Dontcheva, Agrawala et al. 2004) and

9.3 Compositing 459

vertex cover (Uyttendaele, Eden, and Szeliski 2001) often produce similar looking results,
although the former is significantly slower since it optimizes over all pixels, while the latter
is more sensitive to the thresholds used to determine regions of difference.

9.3.3 Application: Photomontage

While image stitching is normally used to composite partially overlapping photographs, it
can also be used to composite repeated shots of a scene taken with the aim of obtaining the
best possible composition and appearance of each element.

Figure 9.16 shows the Photomontage system developed by Agarwala, Dontcheva, Agrawala
et al. (2004), where users draw strokes over a set of pre-aligned images to indicate which re-
gions they wish to keep from each image. Once the system solves the resulting multi-label
graph cut (9.41-9.42), the various pieces taken from each source photo are blended together
using a variant of Poisson image blending (9.44-9.46). Their system can also be used to au-
tomatically composite an all-focus image from a series of bracketed focus images (Hasinoff,
Kutulakos, Durand ef al. 2009) or to remove wires and other unwanted elements from sets of
photographs. Exercise 9.10 has you implement this system and try out some of its variants.

9.3.4 Blending

Once the seams between images have been determined and unwanted objects removed, we
still need to blend the images to compensate for exposure differences and other mis-alignments.
The spatially varying weighting (feathering) previously discussed can often be used to accom-
plish this. However, it is difficult in practice to achieve a pleasing balance between smoothing
out low-frequency exposure variations and retaining sharp enough transitions to prevent blur-
ring (although using a high exponent in feathering can help).

Laplacian pyramid blending. An attractive solution to this problem is the Laplacian pyra-
mid blending technique developed by Burt and Adelson (1983b), which we discussed in Sec-
tion 3.5.5. Instead of using a single transition width, a frequency-adaptive width is used by
creating a band-pass (Laplacian) pyramid and making the transition widths within each level
a function of the level, i.e., the same width in pixels. In practice, a small number of levels,
i.e., as few as two (Brown and Lowe 2007), may be adequate to compensate for differences
in exposure. The result of applying this pyramid blending is shown in Figure 9.14h.

Gradient domain blending. An alternative approach to multi-band image blending is to
perform the operations in the gradient domain. Reconstructing images from their gradient
fields has a long history in computer vision (Horn 1986), starting originally with work in

460 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 9.18 Poisson image editing (Pérez, Gangnet, and Blake 2003) (©) 2003 ACM: (a)
The dog and the two children are chosen as source images to be pasted into the destination
swimming pool. (b) Simple pasting fails to match the colors at the boundaries, whereas (c)
Poisson image blending masks these differences.

brightness constancy (Horn 1974), shape from shading (Horn and Brooks 1989), and photo-
metric stereo (Woodham 1981). More recently, related ideas have been used for reconstruct-
ing images from their edges (Elder and Goldberg 2001), removing shadows from images
(Weiss 2001), separating reflections from a single image (Levin, Zomet, and Weiss 2004;
Levin and Weiss 2007), and fone mapping high dynamic range images by reducing the mag-
nitude of image edges (gradients) (Fattal, Lischinski, and Werman 2002).

Pérez, Gangnet, and Blake (2003) show how gradient domain reconstruction can be used
to do seamless object insertion in image editing applications (Figure 9.18). Rather than copy-
ing pixels, the gradients of the new image fragment are copied instead. The actual pixel values
for the copied area are then computed by solving a Poisson equation that locally matches the
gradients while obeying the fixed Dirichlet (exact matching) conditions at the seam bound-
ary. Pérez, Gangnet, and Blake (2003) show that this is equivalent to computing an additive
membrane interpolant of the mismatch between the source and destination images along the
boundary.'* In earlier work, Peleg (1981) also proposed adding a smooth function to enforce
consistency along the seam curve.

Agarwala, Dontcheva, Agrawala et al. (2004) extended this idea to a multi-source formu-
lation, where it no longer makes sense to talk of a destination image whose exact pixel values
must be matched at the seam. Instead, each source image contributes its own gradient field
and the Poisson equation is solved using Neumann boundary conditions, i.e., dropping any
equations that involve pixels outside the boundary of the image.

14 The membrane interpolant is known to have nicer interpolation properties for arbitrary-shaped constraints than
frequency-domain interpolants (Nielson 1993).

9.3 Compositing 461

Rather than solving the Poisson partial differential equations, Agarwala, Dontcheva, Agrawala
et al. (2004) directly minimize a variational problem,
in |[VC(x) — VI, 2, 9.44
min [VC(x) 1) ()| (9.44)

The discretized form of this equation is a set of gradient constraint equations
Clx+i)—Cz) = Iy (z+1)—Ix)(x) and (9.45)
Clx+3) —Clx) = Iyay(x+3)— ha (@), (9.46)

where 2 = (1,0) and 3 = (0, 1) are unit vectors in the = and y directions.!”> They then solve
the associated sparse least squares problem. Since this system of equations is only defined
up to an additive constraint, Agarwala, Dontcheva, Agrawala et al. (2004) ask the user to
select the value of one pixel. In practice, a better choice might be to weakly bias the solution
towards reproducing the original color values.

In order to accelerate the solution of this sparse linear system, Fattal, Lischinski, and
Werman (2002) use multigrid, whereas Agarwala, Dontcheva, Agrawala et al. (2004) use
hierarchical basis preconditioned conjugate gradient descent (Szeliski 1990b, 2006b) (Ap-
pendix A.5). In subsequent work, Agarwala (2007) shows how using a quadtree represen-
tation for the solution can further accelerate the computation with minimal loss in accuracy,
while Szeliski, Uyttendaele, and Steedly (2008) show how representing the per-image offset
fields using even coarser splines is even faster. This latter work also argues that blending
in the log domain, i.e., using multiplicative rather than additive offsets, is preferable, as it
more closely matches texture contrasts across seam boundaries. The resulting seam blending
works very well in practice (Figure 9.14h), although care must be taken when copying large
gradient values near seams so that a “double edge” is not introduced.

Copying gradients directly from the source images after seam placement is just one ap-
proach to gradient domain blending. The paper by Levin, Zomet, Peleg et al. (2004) examines
several different variants of this approach, which they call Gradient-domain Image STitching
(GIST). The techniques they examine include feathering (blending) the gradients from the
source images, as well as using an L1 norm in performing the reconstruction of the image
from the gradient field, rather than using an L2 norm as in Equation (9.44). Their preferred
technique is the L1 optimization of a feathered (blended) cost function on the original image
gradients (which they call GIST1-/;). Since L1 optimization using linear programming can
be slow, they develop a faster iterative median-based algorithm in a multigrid framework.
Visual comparisons between their preferred approach and what they call optimal seam on
the gradients (which is equivalent to the approach of Agarwala, Dontcheva, Agrawala et al.
(2004)) show similar results, while significantly improving on pyramid blending and feather-
ing algorithms.

15 At seam locations, the right hand side is replaced by the average of the gradients in the two source images.

462 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Exposure compensation. Pyramid and gradient domain blending can do a good job of
compensating for moderate amounts of exposure differences between images. However,
when the exposure differences become large, alternative approaches may be necessary.

Uyttendaele, Eden, and Szeliski (2001) iteratively estimate a local correction between
each source image and a blended composite. First, a block-based quadratic transfer function is
fit between each source image and an initial feathered composite. Next, transfer functions are
averaged with their neighbors to get a smoother mapping and per-pixel transfer functions are
computed by splining (interpolating) between neighboring block values. Once each source
image has been smoothly adjusted, a new feathered composite is computed and the process is
repeated (typically three times). The results shown by Uyttendaele, Eden, and Szeliski (2001)
demonstrate that this does a better job of exposure compensation than simple feathering and
can handle local variations in exposure due to effects such as lens vignetting.

Ultimately, however, the most principled way to deal with exposure differences is to stitch
images in the radiance domain, i.e., to convert each image into a radiance image using its
exposure value and then create a stitched, high dynamic range image, as discussed in Sec-
tion 10.2 (Eden, Uyttendaele, and Szeliski 2006).

9.4 Additional reading

The literature on image stitching dates back to work in the photogrammetry community in
the 1970s (Milgram 1975, 1977; Slama 1980). In computer vision, papers started appearing
in the early 1980s (Peleg 1981), while the development of fully automated techniques came
about a decade later (Mann and Picard 1994; Chen 1995; Szeliski 1996; Szeliski and Shum
1997; Sawhney and Kumar 1999; Shum and Szeliski 2000). Those techniques used direct
pixel-based alignment but feature-based approaches are now the norm (Zoghlami, Faugeras,
and Deriche 1997; Capel and Zisserman 1998; Cham and Cipolla 1998; Badra, Qumsieh, and
Dudek 1998; McLauchlan and Jaenicke 2002; Brown and Lowe 2007). A collection of some
of these papers can be found in the book by Benosman and Kang (2001). Szeliski (2006a)
provides a comprehensive survey of image stitching, on which the material in this chapter is
based.

High-quality techniques for optimal seam finding and blending are another important
component of image stitching systems. Important developments in this field include work by
Milgram (1977), Burt and Adelson (1983b), Davis (1998), Uyttendaele, Eden, and Szeliski
(2001),Pérez, Gangnet, and Blake (2003), Levin, Zomet, Peleg et al. (2004), Agarwala,
Dontcheva, Agrawala et al. (2004), Eden, Uyttendaele, and Szeliski (2006), and Kopf, Uyt-
tendaele, Deussen et al. (2007).

In addition to the merging of multiple overlapping photographs taken for aerial or ter-

9.5 Exercises 463

restrial panoramic image creation, stitching techniques can be used for automated white-
board scanning (He and Zhang 2005; Zhang and He 2007), scanning with a mouse (Nakao,
Kashitani, and Kaneyoshi 1998), and retinal image mosaics (Can, Stewart, Roysam et al.
2002). They can also be applied to video sequences (Teodosio and Bender 1993; Irani, Hsu,
and Anandan 1995; Kumar, Anandan, Irani et al. 1995; Sawhney and Ayer 1996; Massey
and Bender 1996; Irani and Anandan 1998; Sawhney, Arpa, Kumar et al. 2002; Agarwala,
Zheng, Pal et al. 2005; Rav-Acha, Pritch, Lischinski et al. 2005; Steedly, Pal, and Szeliski
2005; Baudisch, Tan, Steedly et al. 2006) and can even be used for video compression (Lee,
ge Chen, lung Bruce Lin et al. 1997).

9.5 Exercises

Ex 9.1: Direct pixel-based alignment Take a pair of images, compute a coarse-to-fine affine
alignment (Exercise 8.2) and then blend them using either averaging (Exercise 6.2) or a Lapla-
cian pyramid (Exercise 3.20). Extend your motion model from affine to perspective (homog-
raphy) to better deal with rotational mosaics and planar surfaces seen under arbitrary motion.

Ex 9.2: Featured-based stitching Extend your feature-based alignment technique from Ex-
ercise 6.2 to use a full perspective model and then blend the resulting mosaic using either
averaging or more sophisticated distance-based feathering (Exercise 9.9).

Ex 9.3: Cylindrical strip panoramas To generate cylindrical or spherical panoramas from
a horizontally panning (rotating) camera, it is best to use a tripod. Set your camera up to take
a series of 50% overlapped photos and then use the following steps to create your panorama:

1. Estimate the amount of radial distortion by taking some pictures with lots of long
straight lines near the edges of the image and then using the plumb-line method from
Exercise 6.10.

2. Compute the focal length either by using a ruler and paper, as in Figure 6.7 (Debevec,
Wenger, Tchou et al. 2002) or by rotating your camera on the tripod, overlapping the
images by exactly 0% and counting the number of images it takes to make a 360°
panorama.

3. Convert each of your images to cylindrical coordinates using (9.12-9.16).

4. Line up the images with a translational motion model using either a direct pixel-based
technique, such as coarse-to-fine incremental or an FFT, or a feature-based technique.

5. (Optional) If doing a complete 360° panorama, align the first and last images. Compute
the amount of accumulated vertical mis-registration and re-distribute this among the
images.

464 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

6. Blend the resulting images using feathering or some other technique.

Ex 9.4: Coarse alignment Use FFT or phase correlation (Section 8.1.2) to estimate the
initial alignment between successive images. How well does this work? Over what range of
overlaps? If it does not work, does aligning sub-sections (e.g., quarters) do better?

Ex 9.5: Automated mosaicing Use feature-based alignment with four-point RANSAC for
homographies (Section 6.1.3, Equations (6.19-6.23)) or three-point RANSAC for rotational
motions (Brown, Hartley, and Nistér 2007) to match up all pairs of overlapping images.

Merge these pairwise estimates together by finding a spanning tree of pairwise relations.
Visualize the resulting global alignment, e.g., by displaying a blend of each image with all
other images that overlap it.

For greater robustness, try multiple spanning trees (perhaps randomly sampled based on
the confidence in pairwise alignments) to see if you can recover from bad pairwise matches
(Zach, Klopschitz, and Pollefeys 2010). As a measure of fitness, count how many pairwise
estimates are consistent with the global alignment.

Ex 9.6: Global optimization Use the initialization from the previous algorithm to perform
a full bundle adjustment over all of the camera rotations and focal lengths, as described in
Section 7.4 and by Shum and Szeliski (2000). Optionally, estimate radial distortion parame-
ters as well or support fisheye lenses (Section 2.1.6).

As in the previous exercise, visualize the quality of your registration by creating compos-
ites of each input image with its neighbors, optionally blinking between the original image
and the composite to better see mis-alignment artifacts.

Ex 9.7: De-ghosting Use the results of the previous bundle adjustment to predict the loca-
tion of each feature in a consensus geometry. Use the difference between the predicted and
actual feature locations to correct for small mis-registrations, as described in Section 9.2.2
(Shum and Szeliski 2000).

Ex 9.8: Compositing surface Choose a compositing surface (Section 9.3.1), e.g., a single
reference image extended to a larger plane, a sphere represented using cylindrical or spherical
coordinates, a stereographic “little planet” projection, or a cube map.

Project all of your images onto this surface and blend them with equal weighting, for now
(just to see where the original image seams are).

Ex 9.9: Feathering and blending Compute a feather (distance) map for each warped source
image and use these maps to blend the warped images.

Alternatively, use Laplacian pyramid blending (Exercise 3.20) or gradient domain blend-
ing.

9.5 Exercises 465

Ex 9.10: Photomontage and object removal Implement a “PhotoMontage” system in which
users can indicate desired or unwanted regions in pre-registered images using strokes or other
primitives (such as bounding boxes).

(Optional) Devise an automatic moving objects remover (or “keeper”) by analyzing which
inconsistent regions are more or less typical given some consensus (e.g., median filtering) of
the aligned images. Figure 9.17 shows an example where the moving object was kept. Try
to make this work for sequences with large amounts of overlaps and consider averaging the
images to make the moving object look more ghosted.

466 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

10.1

10.2

10.3

10.4

10.5

10.6
10.7

Chapter 10

Computational photography

Photometric calibration Lo L 470
10.1.1 Radiometric response function 470
10.1.2 Noise level estimation 473
10.1.3 Vignetting 474
10.1.4 Optical blur (spatial response) estimation 476
High dynamic range imaging 479
10.2.1 Tone mapping o v v v v vttt e e 487
10.2.2 Application: Flash photography 494
Super-resolution and blurremoval 0L 497
10.3.1 Color image demosaicingo 502
10.3.2 Application: Colorization 504
Image matting and compositing oL 505
10.4.1 Bluescreenmatting. v v i bt 507
10.4.2 Natural image matting 509
10.4.3 Optimization-based matting 513
10.4.4 Smoke, shadow, and flash matting 516
1045 Videomatting 518
Texture analysis and synthesis 518
10.5.1 Application: Hole filling and inpainting 521
10.5.2 Application: Non-photorealistic rendering 522
Additional reading Lo 524
Exercises 526

468 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

MNo-Flash Detail Transfer with Denoising

(d)

Figure 10.1 Computational photography: (a) merging multiple exposures to create high
dynamic range images (Debevec and Malik 1997) (©) 1997 ACM; (b) merging flash and non-
flash photographs; (Petschnigg, Agrawala, Hoppe et al. 2004) (© 2004 ACM,; (c) image mat-
ting and compositing; (Chuang, Curless, Salesin ef al. 2001) (©) 2001 IEEE; (d) hole filling
with inpainting (Criminisi, Pérez, and Toyama 2004) (©) 2004 IEEE.

10 Computational photography 469

Stitching multiple images into wide field of view panoramas, which we covered in Chapter 9,
allows us create photographs that could not be captured with a regular camera. This is just
one instance of computational photography, where image analysis and processing algorithms
are applied to one or more photographs to create images that go beyond the capabilities of
traditional imaging systems. Some of these techniques are now being incorporated directly
into digital still cameras. For example, some of the newer digital still cameras have sweep
panorama modes and take multiple shots in low-light conditions to reduce image noise.

In this chapter, we cover a number of additional computational photography algorithms.
We begin with a review of photometric image calibration (Section 10.1), i.e., the measurement
of camera and lens responses, which is a prerequisite for many of the algorithms we describe
later. We then discuss high dynamic range imaging (Section 10.2), which captures the full
range of brightness in a scene through the use of multiple exposures (Figure 10.1a). We also
discuss fone mapping operators, which map rich images back into regular display devices,
such as screens and printers, as well as algorithms that merge flash and regular images to
obtain better exposures (Figure 10.1b).

Next, we discuss how the resolution of images can be improved either by merging mul-
tiple photographs together or using sophisticated image priors (Section 10.3). This includes
algorithms for extracting full-color images from the patterned Bayer mosaics present in most
cameras.

In Section 10.4, we discuss algorithms for cutting pieces of images from one photograph
and pasting them into others (Figure 10.1c). In Section 10.5, we describe how to generate
novel textures from real-world samples for applications such as filling holes in images (Fig-
ure 10.1d). We close with a brief overview of non-photorealistic rendering (Section 10.5.2),
which can turn regular photographs into artistic renderings that resemble traditional drawings
and paintings.

One topic that we do not cover extensively in this book is novel computational sensors,
optics, and cameras. A nice survey can be found in an article by Nayar (2006), a recently
published book by Raskar and Tumblin (2010), and more recent research papers (Levin,
Fergus, Durand et al. 2007). Some related discussion can also be found in Sections 10.2
and 13.3.

A good general-audience introduction to computational photography can be found in the
article by Hayes (2008) as well as survey papers by Nayar (2006), Cohen and Szeliski (2006),
Levoy (2006), and Debevec (2006).! Raskar and Tumblin (2010) give extensive coverage of
topics in this area, with particular emphasis on computational cameras and sensors. The
sub-field of high dynamic range imaging has its own book discussing research in this area
(Reinhard, Ward, Pattanaik et al. 2005), as well as a wonderful book aimed more at profes-

! See also the two special issue journals edited by Bimber (2006) and Durand and Szeliski (2007).

470 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

sional photographers (Freeman 2008).> A good survey of image matting is provided by Wang
and Cohen (2007a).

There are also several courses on computational photography where the instructors have
provided extensive on-line materials, e.g., Frédo Durand’s Computation Photography course
at MIT,? Alyosha Efros’ class at Carnegie Mellon,* Marc Levoy’s class at Stanford,’ and a
series of SIGGRAPH courses on Computational Photography.®

10.1 Photometric calibration

Before we can successfully merge multiple photographs, we need to characterize the func-
tions that map incoming irradiance into pixel values and also the amounts of noise present
in each image. In this section, we examine three components of the imaging pipeline (Fig-
ure 10.2) that affect this mapping.

The first is the radiometric response function (Mitsunaga and Nayar 1999), which maps
photons arriving at the lens into digital values stored in the image file (Section 10.1.1). The
second is vignetting, which darkens pixel values near the periphery of images, especially at
large apertures (Section 10.1.3). The third is the point spread function, which characterizes
the blur induced by the lens, anti-aliasing filters, and finite sensor areas (Section 10.1 4).7 The
material in this section builds on the image formation processes described in Sections 2.2.3
and 2.3.3, so if it has been a while since you looked at those sections, please go back and
review them.

10.1.1 Radiometric response function

As we can see in Figure 10.2, a number of factors affect how the intensity of light arriving
at the lens ends up being mapped into stored digital values. Let us ignore for now any non-
uniform attenuation that may occur inside the lens, which we cover in Section 10.1.3.

The first factors to affect this mapping are the aperture and shutter speed (Section 2.3),
which can be modeled as global multipliers on the incoming light, most conveniently mea-
sured in exposure values (log, brightness ratios). Next, the analog to digital (A/D) converter
on the sensing chip applies an electronic gain, usually controlled by the ISO setting on your
camera. While in theory this gain is linear, as with any electronics non-linearities may be

2 Gulbins and Gulbins (2009) discuss related photographic techniques.

3 MIT 6.815/6.865, http://stellar.mit.edu/S/course/6/sp08/6.8 1 5/materials.html.

4 CMU 15-463, http://graphics.cs.cmu.edu/courses/15-463/.

5 Stanford CS 448A, http://graphics.stanford.edu/courses/cs448a-10/.

6 http://web.media.mit.edu/~raskar/photo/.

7 Additional photometric camera and lens effects include sensor glare, blooming, and chromatic aberration, which
can also be thought of as a spectrally varying form of geometric aberration (Section 2.2.3).

http://stellar.mit.edu/S/course/6/sp08/6.815/materials.html
http://graphics.cs.cmu.edu/courses/15-463/
http://graphics.stanford.edu/courses/cs448a-10/
http://web.media.mit.edu/~raskar/photo/

10.1 Photometric calibration 471

|
Scene | . i
—_—— > > L
Radiance | Optics Aperture Shutter :
] |
: Camera Body :
e o B e 1] RAW
i |
| Sensor ~ Gain » ADC i -
i [(CCDI/ICMOS) (1SO) |
|
|
: Sensor chip :
r--———~~"~""~“"~“""“"“" """ " """ """ """ """ " TTTTT7 |
| |
: » Demosaic »| (Sharpen) I
| |
| |
| |
| |
i JPEG
| |—> White = Gamma/curve (» Compress ;
: Balance |
i DSP l
(a)
Scene oY o
Radiance '\? '? [%
Blur kern. & RD F-stop & Vignette Exposure T
RAW
»{ »
—»(%)—%—»(%} ,\r >
AACFA Noise 1SO Gain Q1
> ? - ?

I JPEG

RGB Gain Gamma & S-curve Q2

(b)

Figure 10.2 Image sensing pipeline: (a) block diagram showing the various sources of noise
as well as the typical digital post-processing steps; (b) equivalent signal transforms, including
convolution, gain, and noise injection. The abbreviations are: RD = radial distortion, AA =
anti-aliasing filter, CFA = color filter array, Q1 and Q2 = quantization noise.

472 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

10 5] 5 Grataghacbeth™ ColorChecker Color Randition Chart
(a) (b)

Figure 10.3 Radiometric response calibration: (a) typical camera response function, show-
ing the mapping between incoming log irradiance (exposure) and output eight-bit pixel val-
ues, for one color channel (Debevec and Malik 1997) (©) 1997 ACM,; (b) color checker chart.

present (either unintentionally or by design). Ignoring, for now, photon noise, on-chip noise,
amplifier noise, and quantization noise, which we discuss shortly, you can often assume that
the mapping between incoming light and the values stored in a RAW camera file (if your
camera supports this) is roughly linear.

If images are being stored in the more common JPEG format, the camera’s digital signal
processor (DSP) next performs Bayer pattern demosaicing (Sections 2.3.2 and 10.3.1), which
is a mostly linear (but often non-stationary) process. Some sharpening is also often applied at
this stage. Next, the color values are multiplied by different constants (or sometimes a 3 x 3
color twist matrix) to perform color balancing, i.e., to move the white point closer to pure
white. Finally, a standard gamma is applied to the intensities in each color channel and the
colors are converted into YCbCr format before being transformed by a DCT, quantized, and
then compressed into the JPEG format (Section 2.3.3). Figure 10.2 shows all of these steps
in pictorial form.

Given the complexity of all of this processing, it is difficult to model the camera response
function (Figure 10.3a), i.e., the mapping between incoming irradiance and digital RGB val-
ues, from first principles. A more practical approach is to calibrate the camera by measuring
correspondences between incoming light and final values.

The most accurate, but most expensive, approach is to use an integrating sphere, which is
a large (typically 1m diameter) sphere carefully painted on the inside with white matte paint.
An accurately calibrated light at the top controls the amount of radiance inside the sphere
(which is constant everywhere because of the sphere’s radiometry) and a small opening at the
side allows for a camera/lens combination to be mounted. By slowly varying the current going
into the light, an accurate correspondence can be established between incoming radiance and

10.1 Photometric calibration 473

measured pixel values. The vignetting and noise characteristics of the camera can also be
simultaneously determined.

A more practical alternative is to use a calibration chart (Figure 10.3b) such as the Mac-
beth or Munsell ColorChecker Chart.® The biggest problem with this approach is to ensure
uniform lighting. One approach is to use a large dark room with a high-quality light source
far away from (and perpendicular to) the chart. Another is to place the chart outdoors away
from any shadows. (The results will differ under these two conditions, because the color of
the illuminant will be different).

The easiest approach is probably to take multiple exposures of the same scene while the
camera is on a tripod and to recover the response function by simultaneously estimating the
incoming irradiance at each pixel and the response curve (Mann and Picard 1995; Debevec
and Malik 1997; Mitsunaga and Nayar 1999). This approach is discussed in more detail in
Section 10.2 on high dynamic range imaging.

If all else fails, i.e., you just have one or more unrelated photos, you can use an Interna-
tional Color Consortium (ICC) profile for the camera (Fairchild 2005).” Even more simply,
you can just assume that the response is linear if they are RAW files and that the images have
a~y = 2.2 non-linearity (plus clipping) applied to each RGB channel if they are JPEG images.

10.1.2 Noise level estimation

In addition to knowing the camera response function, it is also often important to know the
amount of noise being injected under a particular camera setting (e.g., ISO/gain level). The
simplest characterization of noise is a single standard deviation, usually measured in gray
levels, independent of pixel value. A more accurate model can be obtained by estimating
the noise level as a function of pixel value (Figure 10.4), which is known as the noise level
Sfunction (Liu, Szeliski, Kang et al. 2008).

As with the camera response function, the simplest way to estimate these quantities is in
the lab, using either an integrating sphere or a calibration chart. The noise can be estimated
either at each pixel independently, by taking repeated exposures and computing the temporal
variance in the measurements (Healey and Kondepudy 1994), or over regions, by assuming
that pixel values should all be the same within some region (e.g., inside a color checker
square) and computing a spatial variance.

This approach can be generalized to photos where there are regions of constant or slowly
varying intensity (Liu, Szeliski, Kang et al. 2008). First, segment the image into such regions
and fit a constant or linear function inside each region. Next, measure the (spatial) standard
deviation of the differences between the noisy input pixels and the smooth fitted function

8 http://www.xrite.com.
9 See also the ICC Information on Profiles, http://www.color.org/info_profiles2.xalter.

http://www.xrite.com
http://www.color.org/info_profiles2.xalter

474 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 10.4 Noise level function estimates obtained from a single color photograph (Liu,
Szeliski, Kang ez al. 2008) (©) 2008 IEEE. The colored curves are the estimated NLF fit as the
probabilistic lower envelope of the measured deviations between the noisy piecewise-smooth
images. The ground truth NLFs obtained by averaging 29 images are shown in gray.

away from large gradients and region boundaries. Plot these as a function of output level for
each color channel, as shown in Figure 10.4. Finally, fit a lower envelope to this distribution
in order to ignore pixels or deviations that are outliers. A fully Bayesian approach to this
problem that models the statistical distribution of each quantity is presented by (Liu, Szeliski,
Kang et al. 2008). A simpler approach, which should produce useful results in most cases,
is to fit a low-dimensional function (e.g., positive valued B-spline) to the lower envelope (see
Exercise 10.2).

In more recent work, Matsushita and Lin (2007) present a technique for simultaneously
estimating a camera’s response and noise level functions based on skew (asymmetries) in
level-dependent noise distributions. Their paper also contains extensive references to previ-
ous work in these areas.

10.1.3 Vignetting

A common problem with using wide-angle and wide-aperture lenses is that the image tends
to darken in the corners (Figure 10.5a). This problem is generally known as vignetting and
comes in several different forms, including natural, optical, and mechanical vignetting (Sec-
tion 2.2.3) (Ray 2002). As with radiometric response function calibration, the most accurate
way to calibrate vignetting is to use an integrating sphere or a picture of a uniformly colored
and illuminated blank wall.

An alternative approach is to stitch a panoramic scene and to assume that the true radiance
at each pixel comes from the central portion of each input image. This is easier to do if
the radiometric response function is already known (e.g., by shooting in RAW mode) and
if the exposure is kept constant. If the response function, image exposures, and vignetting
function are unknown, they can still be recovered by optimizing a large least squares fitting

10.1 Photometric calibration 475

Figure 10.5 Single image vignetting correction (Zheng, Yu, Kang er al. 2008) © 2008
IEEE: (a) original image with strong visible vignetting; (b) vignetting compensation as de-
scribed by Zheng, Zhou, Georgescu et al. (2006); (c—d) vignetting compensation as described
by Zheng, Yu, Kang et al. (2008).

(d)

Figure 10.6 Simultaneous estimation of vignetting, exposure, and radiometric response
(Goldman 2011) (©) 2011 IEEE: (a) original average of the input images; (b) after compen-
sating for vignetting; (c) using gradient domain blending only (note the remaining mottled
look); (d) after both vignetting compensation and blending.

problem (Litvinov and Schechner 2005; Goldman 2011). Figure 10.6 shows an example of
simultaneously estimating the vignetting, exposure, and radiometric response function from
a set of overlapping photographs (Goldman 2011). Note that unless vignetting is modeled
and compensated, regular gradient-domain image blending (Section 9.3.4) will not create an
attractive image.

If only a single image is available, vignetting can be estimated by looking for slow con-
sistent intensity variations in the radial direction. The original algorithm proposed by Zheng,
Lin, and Kang (2006) first pre-segmented the image into smoothly varying regions and then
performed an analysis inside each region. Instead of pre-segmenting the image, Zheng, Yu,
Kang ef al. (2008) compute the radial gradients at all the pixels and use the asymmetry in
this distribution (since gradients away from the center are, on average, slightly negative) to

476 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

estimate the vignetting. Figure 10.5 shows the results of applying each of these algorithms
to an image with a large amount of vignetting. Exercise 10.3 has you implement some of the
above techniques.

10.1.4 Optical blur (spatial response) estimation

One final characteristic of imaging systems that you should calibrate is the spatial response
function, which encodes the optical blur that gets convolved with the incoming image to pro-
duce the point-sampled image. The shape of the convolution kernel, which is also known as
point spread function (PSF) or optical transfer function, depends on several factors, including
lens blur and radial distortion (Section 2.2.3), anti-aliasing filters in front of the sensor, and
the shape and extent of each active pixel area (Section 2.3) (Figure 10.2). A good estimate of
this function is required for applications such as multi-image super-resolution and de-blurring
(Section 10.3).

In theory, one could estimate the PSF by simply observing an infinitely small point light
source everywhere in the image. Creating an array of samples by drilling through a dark plate
and backlighting with a very bright light source is difficult in practice.

A more practical approach is to observe an image composed of long straight lines or
bars, since these can be fitted to arbitrary precision. Because the location of a horizontal
or vertical edge can be aliased during acquisition, slightly slanted edges are preferred. The
profile and locations of such edges can be estimated to sub-pixel precision, which makes it
possible to estimate the PSF at sub-pixel resolutions (Reichenbach, Park, and Narayanswamy
1991; Burns and Williams 1999; Williams and Burns 2001; Goesele, Fuchs, and Seidel 2003).
The thesis by Murphy (2005) contains a nice survey of all aspects of camera calibration,
including the spatial frequency response (SFR), spatial uniformity, tone reproduction, color
reproduction, noise, dynamic range, color channel registration, and depth of field. It also
includes a description of a slant-edge calibration algorithm called sfrmat2.

The slant-edge technique can be used to recover a 1D projection of the 2D PSF, e.g.,
slightly vertical edges are used to recover the horizontal line spread function (LSF) (Williams
1999). The LSF is then often converted into the Fourier domain and its magnitude plotted as a
one-dimensional modulation transfer function (MTF), which indicates which image frequen-
cies are lost (blurred) and aliased during the acquisition process (Section 2.3.1). For most
computational photography applications, it is preferable to directly estimate the full 2D PSF,
since it can be hard to recover from its projections (Williams 1999).

Figure 10.7 shows a pattern containing edges at all orientations, which can be used to
directly recover a two-dimensional PSF. First, corners in the pattern are located by extracting
edges in the sensed image, linking them, and finding the intersections of the circular arcs.
Next, the ideal pattern, whose analytic form is known, is warped (using a homography) to

10.1 Photometric calibration 477

I.1.

Figure 10.7 Calibration pattern with edges equally distributed at all orientations that can be
used for PSF and radial distortion estimation (Joshi, Szeliski, and Kriegman 2008) (©) 2008
IEEE. A portion of an actual sensed image is shown in the middle and a close-up of the ideal

)

‘%.‘%.‘%.‘%.‘%.‘%‘:5’1

]

Se2 02020203 84 841

o4

S e 02020203 84 841

o4

Se2e02 00 80 841

e

Sia bttt ettt el

e

$ 6202 63 6 4 04

4

Py Y SV Y PV Y IV NN

pattern is on the right.

fit the central portion of the input image and its intensities are adjusted to fit the ones in
the sensed image. If desired, the pattern can be rendered at a higher resolution than the input
image, which enables the estimation of the PSF to sub-pixel resolution (Figure 10.8a). Finally
a large linear least squares system is solved to recover the unknown PSF kernel K,

K:argm}}nHB—D(I*K)HQ, (10.1)

where B is the sensed (blurred) image, I is the predicted (sharp) image, and D is an optional
downsampling operator that matches the resolution of the ideal and sensed images (Joshi,
Szeliski, and Kriegman 2008). In terms of the notation (3.75) introduced in Section 3.4.3,
this could also be written as

b:argmbinHo—D(s*b)Hz, (10.2)

where o is the observed image, s is the sharp image, and b is the blur kernel.

If the process of estimating the PSF is done locally in overlapping patches of the image,
it can also be used to estimate the radial distortion and chromatic aberration induced by the
lens (Figure 10.8b). Because the homography mapping the ideal target to the sensed image
is estimated in the central (undistorted) part of the image, any (per-channel) shifts induced
by the optics manifest themselves as a displacement in the PSF centers.'© Compensating
for these shifts eliminates both the achromatic radial distortion and the inter-channel shifts
that result in visible chromatic aberration. The color-dependent blurring caused by chromatic
aberration (Figure 2.21) can also be removed using the de-blurring techniques discussed in

10 This process confounds the distinction between geometric and photometric calibration. In principle, any ge-
ometric distortion could be modeled by spatially varying displaced PSFs. In practice, it is easier to fold any large
shifts into the geometric correction component.

478 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

4 4 . .
4 4 4 .
o o o .
: . .)
pemnm— RIS, RIS, —
(a)

v 0000000090
000000000
000000000

000000000
000000000
000000000

(b) (©)

Figure 10.8 Point spread function estimation using a calibration target (Joshi, Szeliski, and
Kriegman 2008) © 2008 IEEE. (a) Sub-pixel PSFs at successively higher resolutions (note
the interaction between the square sensing area and the circular lens blur). (b) The radial
distortion and chromatic aberration can also be estimated and removed. (c) PSF for a mis-
focused (blurred) lens showing some diffraction and vignetting effects in the corners.

Section 10.3. Figure 10.8b shows how the radial distortion and chromatic aberration manifest
themselves as elongated and displaced PSFs, along with the result of removing these effects
in a region of the calibration target.

The local 2D PSF estimation technique can also be used to estimate vignetting. Fig-
ure 10.8c shows how the mechanical vignetting manifests itself as clipping of the PSF in the
corners of the image. In order for the overall dimming associated with vignetting to be prop-
erly captured, the modified intensities of the ideal pattern need to be extrapolated from the
center, which is best done with a uniformly illuminated target.

When working with RAW Bayer-pattern images, the correct way to estimate the PSF is
to only evaluate the least squares terms in (10.1) at sensed pixel values, while interpolating
the ideal image to all values. For JPEG images, you should linearize your intensities first,
e.g., remove the gamma and any other non-linearities in your estimated radiometric response
function.

What if you have an image that was taken with an uncalibrated camera? Can you still
recover the PSF an use it to correct the image? In fact, with a slight modification, the previous
algorithms still work.

Instead of assuming a known calibration image, you can detect strong elongated edges
and fit ideal step edges in such regions (Figure 10.9b), resulting in the sharp image shown

10.2 High dynamic range imaging 479

intensity

Valid Region

Min = blury edge
= = spredicted sharp edge

8

1 2) 2 1
distance orthogonal to the edge (in pixels)

(b)

(d)

Figure 10.9 Estimating the PSF without using a calibration pattern (Joshi, Szeliski, and
Kriegman 2008) (©) 2008 IEEE: (a) Input image with blue cross-section (profile) location, (b)
Profile of sensed and predicted step edges, (c—d) Locations and values of the predicted colors
near the edge locations.

in Figure 10.9d. For every pixel that is surrounded by a complete set of valid estimated
neighbors (green pixels in Figure 10.9¢c), apply the least squares formula (10.1) to estimate
the kernel K. The resulting locally estimated PSFs can be used to correct for chromatic
aberration (since the relative displacements between per-channel PSFs can be computed), as
shown by Joshi, Szeliski, and Kriegman (2008).

Exercise 10.4 provides some more detailed instructions for implementing and testing
edge-based PSF estimation algorithms. An alternative approach, which does not require the
explicit detection of edges but uses image statistics (gradient distributions) instead, is pre-
sented by Fergus, Singh, Hertzmann et al. (2006).

10.2 High dynamic range imaging

As we mentioned earlier in this chapter, registered images taken at different exposures can be
used to calibrate the radiometric response function of a camera. More importantly, they can
help you create well-exposed photographs under challenging conditions, such as brightly lit

480 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 10.10 Sample indoor image where the areas outside the window are overexposed
and inside the room are too dark.

1 1,500 25,000 400,000 2,000,000

Figure 10.11 Relative brightness of different scenes, ranging from 1 inside a dark room lit
by a monitor to 2,000,000 looking at the sun. Photos courtesy of Paul Debevec.

scenes where any single exposure contains saturated (overexposed) and dark (underexposed)
regions (Figure 10.10). This problem is quite common, because the natural world contains a
range of radiance values that is far greater than can be captured with any photographic sensor
or film (Figure 10.11). Taking a set of bracketed exposures (exposures taken by a camera
in automatic exposure bracketing (AEB) mode to deliberately under- and over-expose the
image) gives you the material from which to create a properly exposed photograph, as shown
in Figure 10.12 (Reinhard, Ward, Pattanaik et al. 2005; Freeman 2008; Gulbins and Gulbins
2009; Hasinoff, Durand, and Freeman 2010).

While it is possible to combine pixels from different exposures directly into a final com-

Figure 10.12 A bracketed set of shots (using the camera’s automatic exposure bracketing

(AEB) mode) and the resulting high dynamic range (HDR) composite.

10.2 High dynamic range imaging 481

posite (Burt and Kolczynski 1993; Mertens, Kautz, and Reeth 2007), this approach runs the
risk of creating contrast reversals and halos. Instead, the more common approach is to pro-
ceed in three stages:

1. Estimate the radiometric response function from the aligned images.
2. Estimate a radiance map by selecting or blending pixels from different exposures.

3. Tone map the resulting high dynamic range (HDR) image back into a displayable
gamut.

The idea behind estimating the radiometric response function is relatively straightforward
(Mann and Picard 1995; Debevec and Malik 1997; Mitsunaga and Nayar 1999; Reinhard,
Ward, Pattanaik et al. 2005). Suppose you take three sets of images at different exposures
(shutter speeds), say at +2 exposure values.'! If we were able to determine the irradiance
(exposure) E; at each pixel (2.101), we could plot it against the measured pixel value z;; for
each exposure time ¢;, as shown in Figure 10.13.

Unfortunately, we do not know the irradiance values FE;, so these have to be estimated
at the same time as the radiometric response function f, which can be written (Debevec and
Malik 1997) as

zij = f(Ei tj), (10.3)

where ¢; is the exposure time for the jth image. The inverse response curve f~! is given by
fHziy) = Ei t. (10.4)

Taking logarithms of both sides (base 2 is convenient, as we can now measure quantities in
EVs), we obtain
g(zij) = log f~!(2i;) = log E; + logt;, (10.5)

where g = log f~! (which maps pixel values z;; into log irradiance) is the curve we are
estimating (Figure 10.13 turned on its side).

Debevec and Malik (1997) assume that the exposure times ¢; are known. (Recall that
these can be obtained from a camera’s EXIF tags, but that they actually follow a power of 2
progression . .., 1/128, /64, /32, /16, /s, ... instead of the marked ..., 1/125, /60, /30,
/15, 1/s, ... values—see Exercise 2.5.) The unknowns are therefore the per-pixel exposures
E; and the response values g, = g(k), where g can be discretized according to the 256
pixel values commonly observed in eight-bit images. (The response curves are calibrated
separately for each color channel.)

Il Changing the shutter speed is preferable to changing the aperture, as the latter can modify the vignetting and
focus. Using 42 “f-stops” (technically, exposure values, or EVs, since f-stops refer to apertures) is usually the right
compromise between capturing a good dynamic range and having properly exposed pixels everywhere.

482 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

E S 3 /
g y 2 - §
© o
X c o, X
o . a
ey I

log Exposure log Exposure

Figure 10.13 Radiometric calibration using multiple exposures (Debevec and Malik 1997).
Corresponding pixel values are plotted as functions of log exposures (irradiance). The curves
on the left are shifted to account for each pixel’s unknown radiance until they all line up into

a single smooth curve.

In order to make the response curve smooth, Debevec and Malik (1997) add a second-

order smoothness constraint

AY g (k)P =D gk — 1) = 2g(k) + g(k + 1)), (10.6)
k

which is similar to the one used in snakes (5.3). Since pixel values are more reliable in the
middle of their range (and the g function becomes singular near saturation values), they also
add a weighting (hat) function w(k) that decays to zero at both ends of the pixel value range,

. < .
w(z) = F7Fmn 25 (2min + Zmax)/2 (10.7)
Zmax — 2 X > (Zmin + Zmax)/Q'

Putting all of these terms together, they obtain a least squares problem in the unknowns
{9} and {E;},

E=Y" w(zi;)g(z;) —log B; —logt;]> + X > " w(k)g” (k)?. (10.8)
i g k

(In order to remove the overall shift ambiguity in the response curve and irradiance values,
the middle of the response curve is set to 0.) Debevec and Malik (1997) show how this can
be implemented in 21 lines of MATLAB code, which partially accounts for the popularity of
their technique.

While Debevec and Malik (1997) assume that the exposure times ¢; are known exactly,
there is no reason why these additional variables cannot be thrown into the least squares
problem, constraining their final estimated values to lie close to their nominal values fj with

an extra term 7) Zj (t; — fj)2_

10.2 High dynamic range imaging 483

pivel valie 2

(b)

Figure 10.14 Recovered response function and radiance image for a real digital camera
(DCS460) (Debevec and Malik 1997) (© 1997 ACM.

Figure 10.14 shows the recovered radiometric response function for a digital camera along
with select (relative) radiance values in the overall radiance map. Figure 10.15 shows the
bracketed input images captured on color film and the corresponding radiance map.

While Debevec and Malik (1997) use a general second-order smooth curve g to parame-
terize their response curve, Mann and Picard (1995) use a three-parameter function

f(E) =a+ BE, (10.9)

while Mitsunaga and Nayar (1999) use a low-order (N < 10) polynomial for the inverse
response function g. Pal, Szeliski, Uyttendaele et al. (2004) derive a Bayesian model that
estimates an independent smooth response function for each image, which can better model
the more sophisticated (and hence less predictable) automatic contrast and tone adjustment
performed in today’s digital cameras.

Once the response function has been estimated, the second step in creating high dynamic
range photographs is to merge the input images into a composite radiance map. If the re-
sponse function and images were known exactly, i.e., if they were noise free, you could use
any non-saturated pixel value to estimate the corresponding radiance by mapping it through
the inverse response curve £ = g(z).

Unfortunately, pixels are noisy, especially under low-light conditions when fewer photons
arrive at the sensor. To compensate for this, Mann and Picard (1995) use the derivative of
the response function as a weight in determining the final radiance estimate, since “flatter”
regions of the curve tell us less about the incoming irradiance. Debevec and Malik (1997)
use a hat function (10.7) which accentuates mid-tone pixels while avoiding saturated values.
Mitsunaga and Nayar (1999) show that in order to maximize the signal-to-noise ratio (SNR),

484 Computer Vision: Algori